You can generate Pythagorean triples where $B-A=\pm1$ in sequence with a seed Triple: $T_0=(0,0,1)$ using the following formula:
$$A_{n+1}=3A_n+2C_n+1\qquad B_{n+1}=3A_n+2C_n+2\qquad C_{n+1}=4A_n+3C_n+2$$
For example, it generates the following
$$T_1=(3,4,5)\qquad T_2=(20,21,29)\qquad T_3=(119,120,169)\qquad T_4=(697,696,985)$$
Another way to generate them directly is using Pell numbers that will feed Euclid's formula
$$P_n=\frac{(1+\sqrt2)^n-(1-\sqrt2)^n}{2\sqrt2}$$
This [Pell] function generates the series $1, 2, 5, 12, 29, 70, 169 ...$ and is a shoe-in for the $(r,s)$ pairs that generate $T_1, T_2, T_3 ...$ shown above. You find them using $\quad r_x=P_{x+1}\quad s_x=P_x\quad $ to obtain the following pairs (excuse using the letter P to describe pairs instead of individual Pell numbers):
$$P_1=(2,1)\quad P_2=(5,2)\quad P_3=(12,5)\quad P_4=(29,12)\quad P_5=(70,29)\quad P_6=(169,70)\quad ...$$
Once you have these, you plug them into Euclid's formula:
$$A=r^2-s^2\qquad B=2rs\qquad C=r^2+s^2$$
and since you want all sides to be greater than $100$, you need only start with Pell-number $3$. Hope this helps.
The final formulas look like this:
\begin{equation}
r_n= \frac{(1 + \sqrt{2})^{n+1} - (1 - \sqrt{2})^{n+1}}{2\sqrt{2}}\qquad \qquad\qquad
s_n= \frac{(1 + \sqrt{2})^n - (1 - \sqrt{2})^n}{2\sqrt{2}}
\end{equation} For example
${\small
\begin{align*}
&\frac{(1 + \sqrt{2})^{2} - (1 - \sqrt{2})^{2}}{2\sqrt{2}}=2 &
\frac{(1 + \sqrt{2})^1 - (1 - \sqrt{2})^1}{2\sqrt{2}}=1,\space & F(2,1)=(3,4,5)\\
& \frac{(1 + \sqrt{2})^{3} - (1 - \sqrt{2})^{3}}{2\sqrt{2}}=5 &
\frac{(1 + \sqrt{2})^2 - (1 - \sqrt{2})^2}{2\sqrt{2}}=2,\space & F(5,2)=(21,20,29)\\
& \frac{(1 + \sqrt{2})^{4} - (1 - \sqrt{2})^{4}}{2\sqrt{2}}=12 &
\frac{(1 + \sqrt{2})^3 - (1 - \sqrt{2})^3}{2\sqrt{2}}=5,\space & F(12,5)=(119,120,169)\\
&\frac{(1 + \sqrt{2})^{5} - (1 - \sqrt{2})^{5}}{2\sqrt{2}}=29 &
\frac{(1 + \sqrt{2})^4 - (1 - \sqrt{2})^4}{2\sqrt{2}}=12,\space & F(29,12)=(697,696,985)
\end{align*}
}$