It tried to solve this limit
$$ \lim_{n \to \infty} \frac{\sqrt[n]{n\cdot(n+1)\cdots(2n)}}{n}$$ $ \frac{\sqrt[n]{n\cdot(n+1)\cdots(2n)}}{n} = \sqrt[n]{\frac {2n!n}{n!}} \frac{1}{n} \sim \sqrt[n]{\frac { \sqrt {2 \pi 2 n} (\frac {2n}{e})^ {2n}n }{\sqrt {2 \pi n} (\frac {n}{e})^ {n} }} \frac{1}{n} = \sqrt[n]{\frac { \sqrt {2 } (\frac {2n}{e})^ {n}(\frac {2n}{e})^ {n}n }{ (\frac {n}{e})^ {n} }} \frac{1}{n} = 2^{\frac{1}{2n}} \frac{4}{e}n^{\frac{1}{n}} \rightarrow \frac{4}{e}$
Is it right?