Prove that the following holds for $n \in N$ by strong induction $$ 1+4+7+...+(3x-2) = \dfrac{x(3x-1)}{2}$$
I can see the following for simple (weak) induction. Let $P(x)$ be the proposition for $x$
base case (x=1): $$3(1)-2=1$$ and $$\dfrac{(1)(3(1)-1)}{2}=1$$ $P(1)$ holds true
I.H.: Assume $P(k)$ is true for some $k\geq 1$ I.S.: ($P(k)\implies P(k+1)$) $$ 1+...+ (3(k+1) -2) = 1 + ... + (3k -2) + (3(k+1)-2) \\ = \dfrac{k(3k-1)}{2} + (3(k+1)-2) \\ = \dfrac{(3k^2-k)+(6k+2)}{2} \\ = \dfrac{3k^2 + 5k + 2}{2} \\ = \dfrac{(k+1)(3(k+1) -1)}{2} \textit{done!} $$
But what do I do for strong induction? Would I have different base cases?