If $x-y=z$, show that : $$1=(-1)^{m+1}\sum_{j=0}^{m} \dbinom{m+j}{j}\left[\frac{x^jy^{m+1}}{z^{m+j+1}}-(-1)^{m+j+1}\frac{x^{m+1}y^j}{z^{m+j+1}}\right]$$
I tried expanding: $$1=\left(\frac{x}{z}-\frac{y}{z}\right)^{m+1}$$ as it was given as a hint in the book but couldn't reach far enough ..