0

$\suṃ̣_{k=m}^{n} (-1)^k {n \choose k} {k \choose m}$ for all positive integers such that n > m.

My attempt, since k=m. I get $\suṃ̣_{k=m}^{n} (-1)^k {n \choose k} {m \choose m} = \suṃ̣_{k=m}^{n} (-1)^k {n \choose k}$.

What do I do from this step?

1 Answers1

2

Use the identity $$ \binom{n}{k}\binom{k}{m}=\binom{n}{m}\binom{n-m}{k-m} $$ to rewrite the sum as $$ \binom{n}{m}\sum_{k=m}^n (-1)^k\binom{n-m}{k-m}= \binom{n}{m}(-1)^m\sum_{u=0}^{n-m}(-1)^{u}\binom{n-m}{u} =\binom{n}{m}(-1)^m(1-1)^{n-m}=0 $$ where in the first equality we make the change of indices $u=k-m$ and in the penultimate equality we use the binomial theorem and the fact that $n>m$.