If $f (x – y) = f (x) · g (y) – f (y) · g (x)$ and $g (x – y) = g (x) · g (y) + f (x) · f (y)$ for all $x, y \in R$. If right hand derivative at $x = 0$ exists for $f (x)$. Find derivative of $g (x)$ at $x = 0$.
My attempt is as follows:-
$$\lim_{h\to0^{+}}=\dfrac{f(h)-f(0)}{h}$$
Putting $x=0,y=0$ in the first functional equation
$$f(0)=f(0)g(0)-f(0)g(0)$$ $$f(0)=0$$
Putting $x=0,y=0$ in the second functional equation
$$g(0)=g^2(0)$$ $$g(0)=0 \text { or } g(0)=1$$
Case $1$: $g(0)=0$
Putting $x=h,y=0$ in the first equation
$$f(h)=f(h)g(0)-f(0)g(h)$$
$$f(h)=0$$
So $$\lim_{h\to0^{+}}=\dfrac{f(h)-f(0)}{h}=0=f'(0^+)$$
Putting $x=h,y=0$ in the second equation
$$g(h)=g(h)g(0)+f(h)f(0)$$ $$g(h)=0$$
$$g'(0)=\lim_{h\to0}=\dfrac{g(h)-g(0)}{h}=0$$
Case $2$: $g(0)=1$
Putting $x=0,y=h$ in the first equation
$$f(0-h)=f(0)g(h)-f(h)g(0)$$ $$f(-h)=-f(h)$$
$$g(0-h)=g(0)g(h)+f(0)f(h)$$ $$g(-h)=g(h)$$
$$\lim_{h\to 0}\dfrac{g(h)-g(0)}{h}$$
Put $x=\dfrac{h}{2},y=-\dfrac{h}{2}$ in the second functional equation
$$g(h)=g\left(\dfrac{h}{2}\right)g\left(-\dfrac{h}{2}\right)+f\left(\dfrac{h}{2}\right)f\left(-\dfrac{h}{2}\right)$$
$$g(h)=g\left(\dfrac{h}{2}\right)g\left(\dfrac{h}{2}\right)-f\left(\dfrac{h}{2}\right)f\left(\dfrac{h}{2}\right)\tag{1}$$
Putting $x=y$ in the second functional equation
$$g(0)=g(x)^2+f(x)^2$$
$$g(h)=1-f\left(\dfrac{h}{2}\right)f\left(\dfrac{h}{2}\right)-f\left(\dfrac{h}{2}\right)f\left(\dfrac{h}{2}\right)\tag{1}$$
$$\lim_{h\to 0}\dfrac{-2f^2\left(\dfrac{h}{2}\right)}{h}$$
$$\lim_{h\to 0}\dfrac{-2hf^2\left(\dfrac{h}{2}\right)}{4\left(\dfrac{h}{2}\right)^2}$$
$$\dfrac{-1}{2}\cdot\left(\lim_{h\to 0}h\right)\cdot\lim_{h\to 0}\dfrac{f^2\left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)^2}$$
$$\dfrac{-1}{2}\cdot\left(\lim_{h\to 0}h\right)\cdot f'(0)^2=0$$