We have
$$\lim{_{n \to \infty } } \frac{\frac{\sin(1)}{1}+\frac{\sin(2)}{2}+\frac{\sin(3)}{3}+...+\frac{\sin(n)}{n} }{n}=\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\frac{\sin(i)}{i}$$
But
$$\left|\sum_{i=1}^n\frac{\sin(i)}{i}\right|\leq\sum_{i=1}^n\frac{|\sin(i)|}{i}\leq \sum_{i=1}^n\frac{1}{i}=H_n$$
where $H_i$ is the $i$th Harmonic number. However, this is well known to be bounded by
$$H_n<1+\ln(n+1)$$
for large enough $n$. Thus
$$\lim_{n\to\infty}\left|\frac{1}{n}\sum_{i=1}^n\frac{\sin(i)}{i}\right|\leq \lim_{n\to\infty}\frac{1+\ln(n+1)}{n}=0$$
Since the absolute value of the expression goes to zero, we conclude
$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\frac{\sin(i)}{i}=0$$