1

How can I show that $\mathbb{Q}(\sqrt[3]{5}, \sqrt[3]{7}) = \mathbb{Q}(\sqrt[3]{5}+\sqrt[3]{7})$?

I tried:

$\sqrt[3]{5}+\sqrt[3]{7} \in \mathbb{Q}(\sqrt[3]{5}, \sqrt[3]{7}) \Rightarrow \mathbb{Q}(\sqrt[3]{5}+\sqrt[3]{7}) \subset \mathbb{Q}(\sqrt[3]{5}, \sqrt[3]{7})$

For the other direction I get:

$(\sqrt[3]{5}+\sqrt[3]{7})^3=12+(\sqrt[3]{5})^2\sqrt[3]{7}+2(\sqrt[3]{5})^2\sqrt[3]{7}+2\sqrt[3]{5}(\sqrt[3]{7})^2+(\sqrt[3]{7})^2\sqrt[3]{5} \in \mathbb{Q}(\sqrt[3]{5}+\sqrt[3]{7})$

Now I don't know what to do next.

How to continue to show that $\mathbb{Q}(\sqrt[3]{5},\sqrt[3]{7}) \subset \mathbb{Q}(\sqrt[3]{5} + \sqrt[3]{7})$?

Gerturter
  • 195

0 Answers0