I work on Complete elliptic integral of the second kind and I want to show this :
$$E(2)=-i\Big(E(2)-\sqrt{\frac{2}{\pi}}\Gamma\Big(\frac{3}{4}\Big)^2\Big)$$ Where $E(k)$ denotes the Complete Elliptic Integral of the Second Kind with parameter $m=k^2$ And $\Gamma(x)$ denotes the gamma function an $i$ the imaginary unit .
To prove it I compare two integrals like this :
$$\int_{0}^{\frac{\pi}{2}}\sqrt{(\sin^2(x)-\cos^2(x))} \quad and \int_{0}^{\frac{\pi}{2}}\sqrt{(\cos^2(x)-\sin^2(x))}$$
And in fact with a numerical approach it sems to be :
$$\int_{0}^{\frac{\pi}{2}}\sqrt{(\sin^2(x)-\cos^2(x))} = \int_{0}^{\frac{\pi}{2}}\sqrt{(\cos^2(x)-\sin^2(x))}$$ Wich gives the result
Remains to evaluate this two integrals wich is not so hard .
So I would like to know if there is an other way to prove it .
Thanks a lot