Consider $[0,1]$ with Lebesgue measure, and let $f:[0,1] \rightarrow \mathbb{R}$ , $f(x)=\frac{1}{1+x^{2}}$. How do we find $\lim _{p \to \infty } \|f \|_{p}$ ?
1) $0$
2) $\frac{\pi}{2} $
3) $1$
4) $\infty$
$\|f\|_p=\left(\displaystyle\int|f|^{p}d\mu\right)^{1/p}$ for $p=1$ we have
$\displaystyle\int \frac{1}{1+x^{2}}\, d x=\tan ^{-1}(x)+C$