Question:
Define $\Omega =\frac{2k^{7}+1}{3k^{3}+2},k\in\mathbb{N}$. Prove that : $$\Omega \operatorname{reducible}\implies k\equiv 435\pmod{1163}$$
My try as follows:
Let $d=\gcd(2k^{7}+1,3k^{3}+2)$
So : $d$ divide $2k^{7}+1$ and $3k^{3}+2$ this mean :
$d$ divide
$$3(2k^{7}+1)-2k^{4}(3k^{3}+2)=3-4k^{4}$$
Then $d$ divide
$4k(3k^{3}+2)+3(3-4k^{2})=8k+9$$
How do I complete it? And where am I atop?