-1

Question:

Define $\Omega =\frac{2k^{7}+1}{3k^{3}+2},k\in\mathbb{N}$. Prove that : $$\Omega \operatorname{reducible}\implies k\equiv 435\pmod{1163}$$


My try as follows:

Let $d=\gcd(2k^{7}+1,3k^{3}+2)$

So : $d$ divide $2k^{7}+1$ and $3k^{3}+2$ this mean :

$d$ divide

$$3(2k^{7}+1)-2k^{4}(3k^{3}+2)=3-4k^{4}$$

Then $d$ divide

$4k(3k^{3}+2)+3(3-4k^{2})=8k+9$$

How do I complete it? And where am I atop?

Ellen Ellen
  • 2,319

3 Answers3

1

Continuing from your last step, we have, $$d\Big\vert 8(3k^3+2)-3k^2(8k+9)$$ $$\implies d\Big\vert16-27k^2$$ $$\implies d\Big\vert27k(8k+9)+8(16-27k^2)$$ $$\implies d\Big\vert243k+128$$ $$\implies d\Big\vert243(8k+9)-8(243k+128)$$ $$\implies d\Big\vert1163$$ Now, $1163$ is a prime number, and for $\Omega$ to be reducible, $d>1$. Hence, $$d=1163$$ $$\implies 1163\Big\vert 8k+9-3\times1163$$ $$\implies 1163\Big\vert8(k-435)$$ Since $1163$ and $8$ are coprime, we are done.

Martund
  • 14,706
  • 2
  • 13
  • 30
1

More systematically:

The extended Euclidean algorithm for gcd gives $$ 1163 = A(2 k^7 + 1)+B(3 k^3 + 2) $$ for some $A,B$ not relevant here.

Let $d=\gcd(2 k^7 + 1,3 k^3 + 2)$. Then $d$ divides $1163$. If fraction is reducible, then $d>1$ and so $d=1163$ because $1163$ is prime.

Now, Euclidean division gives $$ 9(2 k^7 + 1) = (6 k^4 - 4 k)(3 k^3 + 2) + (8 k + 9) $$ Therefore, $d=1163$ divides $8 k + 9$. This is equivalent to $k\equiv 435\bmod{1163}$.

Indeed, to solve $8n+9\equiv 0\bmod{1163}$, find the inverse of $8$ mod $1163$ using the extended Euclidean algorithm. You'll get $727$. Then $n \equiv 727\cdot (-9) \equiv 435 \bmod{1163}$.

lhf
  • 216,483
0

Hint: $\bmod d = (3k^3\!+\!2,2k^7\!+\!1)\!:\,\ k^3 \equiv -\frac{2}3,\ k^7\equiv -\frac{1}2,\,$ so $\,(-\frac{2}3)^7\equiv k^{21}\equiv (-\frac{1}2)^3,\,$ so $\,0\equiv 3^7-2^{10}\equiv 1163.\,$ Thus $\,k \equiv k^7/(k^3)^3\equiv (-1/2)/(4/9)\equiv -9/8,\, $ and

$\!\!\bmod 1163\!:\,\ 3\left[\dfrac{-3}8\right] \equiv 3\left[\dfrac{1160}8\right]\equiv 3[145]\equiv 435\ \ $ [All easy mental arithmetic]

Bill Dubuque
  • 272,048