$\color{green}{\textbf{Elaborated version (07.02.20).}}$
The issue Diophantine task is presented in the form of quintic over $2D$ set of pairs $(m,n).$
At the same time, from the quihtic should
$$P = ABC,\tag{i1}$$
where
$$A^2+B^2=C^2,\tag{i2}$$
i.e $(A,B,C)$ is a Pythagorean triple.
If the quintic solution $(m,n)$ exists, then the triple $(A_{mn},B_{mn},C_{mn}),$
where
$$A_{mn}=m^2-n^2,\quad B_{mn}=2mn,\quad C_{mn}=m^2+n^2\tag{i3}$$
should belong to the set of the solutions of the Diophantine task $(i1)-(i2).$
This possibility was pointed in OP. Let us apply it.
The approach, proposed below, uses constraints only for unknown $C.$ Then for each possible value of $C$ from $(i1)-(i2)$ calculates the solution triple $(A,B,C).$
If such solution exists, then the solution $(m,n)$ of $(i3)$ is the solution of the given quintic.
Calculations of the pair $(m,n),$ which correspond to the certain solution of $(i1)-(i2),$ are not hard.
For example, if $P=2\,88987\,09840,$ then there are $48$ possible values of $C$ before testing of the required interval and $7$ values after the testing, and only the single value leads to the valid pair $(A,B)$ and to the valid quintic root $(m,n)$.
So the proposed approach looks preferable.
$\color{brown}{\textbf{Constraints.}}$
1.
Since $C^2 = A^2 + B^2$ and $A\not=B,$ then $C^2 > 2AB,$
$$C > \sqrt[\large3]{2P\large\mathstrut}.\tag1$$
Example: $A=21, B=20, C=29, P = 12180, \sqrt[3]{24360}\approx 28.988.$
2.
At the same time, $A^2B^2 = (C-k)^2(C^2-(C-k)^2),$
with the least value at $k=1.$
Then
$$A^4 B^4 = (C-1)^4(2C-1)^2 = (C-1)^4 (4C^2-4C+1),$$
$$P^4 = A^4B^4C^4 = \dfrac1{256}(4C^2-4C)^4(4C^2-4C+1)\\[4pt]
> \dfrac1{256}\Big(4C^2-4C\Big)^5
= \dfrac1{256}\Big((2C-1)^2-1\Big)^5,$$
$$C < \dfrac12\left(\sqrt{(4P)^{^4/_5}+1\ }\ + 1\right).\tag2$$
Example: $A=35, B=12, C=37, P=15540, \dfrac12\left(\sqrt{62160^{0.8}+1}+1\right)\approx41.843.$
3.
Also, is known that $12\,|\,AB,$ then
$$C\,\bigg|\,\dfrac P{12}\tag3.$$
4.
Variable $C$ is the sum of two squares. Then should provide conditions, which correspond with the Fermat theorem of sums of two squares (I've used Russian version of the book Harold M. Edwards. Fermat Last Theorem, Schpringer 1977.)
The number is the sum of two squares, if and only if it is
a square, or
a prime $p$, wherein $p=4t+1,\, t\in\mathbb N,$ or
$2,$ or
the production of the such numbers.
Therefore, the primary filtration of the possible values of $C$ can be based on the constraints in the form of
\begin{cases}
C\in\left[\left\lceil\sqrt[3]{2P\large\mathstrut}\LARGE\mathstrut\right\rceil,
\left\lfloor\dfrac12\left(\sqrt{(4P)^{^4/_5}+1\ }\ + 1\right)\right\rfloor\right]\\[4pt]
C\,\bigg|\,\dfrac P{12}\\[4pt]
C = 2^i s^{2j} \prod\limits_{k=0}^f (4t_k+1)\\[4pt]
(i,j,f)\in \mathbb Z_+^3\\[4pt]
s-2\in\mathbb N,\ \{t_k\} \in \mathbb Z_+^f.\tag4
\end{cases}
$\color{brown}{\textbf{Secondary filtration and the quintic solution calculations.}}$
1.
From $(i1)-(i2)$ should
\begin{cases}
C^2+\dfrac{2P}C = S^2\\[4pt]
C^2-\dfrac{2P}C = D^2\\[4pt]
\dbinom AB \in \left\{\dfrac12\dbinom{S+D}{S-D},\dfrac12\dbinom{S-D}{S+D}\right\}
\\[4pt]
(A,B,S,D)\in\mathbb N^4\tag5
\end{cases}
(secondary filtration).
Easily to see, that $(5)$ has two solutions or nothing.
2.
If the Diophantine system $(5)$ has solution $(A,B,C)$ and $(A_{mn},B_{mn},C_{mn}) = (A,B,C),$ then from $(i3)$ should
\begin{cases}
2m^2 = C+A\\
2mn = B.\tag6
\end{cases}
3.
$(4)-(6)$ define all possible solutions of the given quintic.
$\color{brown}{\mathbf{Example\ P=60.}}$
Equation $(4.3)$ is $C\,|\,5,$
with the single solution $\color{brown}{\mathbf{C=5}}$ in the form of $4\cdot 1+1.$
Required interval is $[5,5].$
Then from $(5-6)$ follows
\begin{cases}
\{S^2,D^2\} = 25\pm24\in\{7^2,1^2\}\\
\color{brown}{\mathbf{\dbinom AB = \dbinom {3}{4}}}\\
2m^2 = 5+3\\
2mn = 4,
\end{cases}
with the solution over $\mathbb N$ of the quintic $\color{brown}{\mathbf{m = 2,\ n = 1}}.$
$\color{brown}{\mathbf{Example\ P=480.}}$
Equation $(4.3)$ is $C\,|\,40.$
Required interval is $[10,10].$
The single solution is $\color{brown}{\mathbf{C=10}}$ in the form of $2(4\cdot 1+1).$
Then from $(5-6)$ follows
\begin{cases}
\{S^2,D^2\} = 100\pm96\in\{14^2,2^2\}\\
\color{brown}{\mathbf{\dbinom AB = \dbinom {8}{6}}}\\
2m^2 = 10+8\\
2mn = 6,
\end{cases}
with the solution over $\mathbb N$ of the quintic $\color{brown}{\mathbf{m = 3,\ n = 1}}.$
$\color{brown}{\mathbf{Example\ P=780.}}$
Equation $(4.3)$ is $C\,|\,65.$
Required interval is $[12,13].$
The single solution is $\color{brown}{\mathbf{C=13}}$ in the form of $4\cdot3+1.$
Then from $(5-6)$ follows
\begin{cases}
\{S^2,D^2\} = 169\pm120\in\{17^2,7^2\}\\
\color{brown}{\mathbf{\dbinom AB = \dbinom {5}{12}}}\\
2m^2 = 13+5\\
2mn = 12,
\end{cases}
with the solution over $\mathbb N$ of the quintic $\color{brown}{\mathbf{m = 3,\ n = 2}}.$
$\color{brown}{\mathbf{Example\ P=2040.}}$
Equation $(4.3)$ is $C\,|\,170.$
Required interval is $[16,18].$
The single solution is $\color{brown}{\mathbf{C=17}}$ in the form of $4\cdot4+1.$
Then from $(5-6)$ follows
\begin{cases}
\{S^2,D^2\} = 289\pm240\in\{23^2,7^2\}\\
\color{brown}{\mathbf{\dbinom AB = \dbinom {15}{8}}}\\
2m^2 = 15+17\\
2mn = 8,
\end{cases}
with the solution over $\mathbb N$ of the quintic $\color{brown}{\mathbf{m = 4,\ n = 1}}.$
$\color{brown}{\mathbf{Example\ P=4200.}}$
Equation $(4.3)$ is $C\,|\,350.$
Required interval is $[21,25].$
The single solution is $\color{brown}{\mathbf{C=25}}$ in the form of $5^2 = 4\cdot6+1.$
Then from $(5-6)$ follows
\begin{cases}
\{S^2,D^2\} = 625\pm336\in\{31^2,17^2\}\\
\color{brown}{\mathbf{\dbinom AB = \dbinom {7}{24}}}\\
2m^2 = 25+7\\
2mn = 24,
\end{cases}
with the solution over $\mathbb N$ of the quintic $\color{brown}{\mathbf{m = 4,\ n = 3}}.$
$\color{brown}{\mathbf{Example\ P = 2\,88987\,09840.}}$
Required interval is $[3867,13309]$
Equation $(4.3)$ is $C\,|\, 24082\,25820 = 4\cdot3\cdot5\cdot7\cdot11\cdot13\cdot101\cdot397.$
The valid form of $C$ is
$$C = 2^i 5^{a-1} 13^{b-1} 101^{c-1} 397^{d-1},$$
where
$$i \in \{0,1,2\},\quad (a,b,c,d) \in \{1,2\}^4$$
(totally, $48$ valid productions).
Belong to the required interval
$$\color{blue}{\mathbf{C\in\{3970 = 2\cdot5\cdot 397, 5252=4\cdot13\cdot101, 5161=13\cdot397, 6565=5\cdot13\cdot101, {7940=4\cdot5\cdot3}97, 10322=2\cdot13\cdot397, 13130=2\cdot5\cdot13\cdot101\}}}$$
(see also Wolfram Alpha calculations factor1, factor2, factor4).
Therefore, only seven possible values of C belong to the required interval.
If $C=3970,$ then from $(5-6)$
$$\{S^2,D^2\} = 3970^2\pm\dfrac{5\,77974\,19680}{3970},
\{S,D\}\in\varnothing.$$
If $C=5252,$ then from $(5-6)$
$$\{S^2,D^2\} = 5252^2\pm\dfrac{5\,77974\,19680}{5252},
\{S,D\}\in\varnothing.$$
If $\color{brown}{\mathbf{C=5161}},$ then from $(5-6)$ follows
\begin{cases}
\{S^2,D^2\} = 5161^2\pm\dfrac{5\,77974\,19680}{5161}\in\{6151^2,3929^2\}\\
\color{brown}{\mathbf{\dbinom AB = \dbinom {1111}{5040}}}\\
2m^2 = 5161+1111\\
2mn = 5040,
\end{cases}
with the solution over $\mathbb N$ of the quintic $\color{brown}{\mathbf{m = 56,\ n = 45}}.$
If $C=6565,$ then from $(5-6)$
$$\{S^2,D^2\} = 6565^2\pm\dfrac{5\,77974\,19680}{6565},
\{S,D\}\in\varnothing.$$
If $C=7940,$ then from $(5-6)$
$$\{S^2,D^2\}= 7940^2\pm\dfrac{5\,77974\,19680}{7940},
\{S,D\}\in\varnothing.$$
If $C=10322,$ then from $(5-6)$
$$\{S^2,D^2\} = 10322^2\pm\dfrac{5\,77974\,19680}{10322},
\{S,D\}\in\varnothing.$$
If $C=13130,$ then from $(5-6)$
$$\{S^2,D^2\} = 13130^2\pm\dfrac{5\,77974\,19680}{13130},
\{S,D\}\in\varnothing.$$
Therefore, the single solution over $\mathbb N$ of the quintic is $\color{brown}{\mathbf{m = 56,\ n = 45}}.$
This example demonstrates high effectiveness of the proposed approach.
$\color{blue}{\textbf{Too long for a comment.}}$
1. If $\dfrac Q{60}$ has dividers of the six order, then previosly should be tested the value of $Q$ with the eliminated divider.
This approach can garantee that $\gcd(m,n)=1.$
2. Alternative form
$$\left(A+\dfrac{P}{AC}\right)^2 = C^2+\dfrac{2P}C$$
does not contain $B.$