Let $n$ be a positive integer, $\sigma > 0$, and $h > 0$. Consider a height-$h$ piece of the standard $n$-dimensional sphere, defined by $$ S_n(h) := \{x \in \mathbb R^n \mid \|x\|_2 \le 1,\;x_1 \ge h\}. $$
Question. What is the value of the integral $$I_{n,\sigma}(h):=\mathbb P_{x \sim \mathcal N(0,\sigma^2 I)}(x \in S_n(h)) = (2\pi\sigma^2)^{-n/2}\int_{S_n(h)}e^{-\frac{1}{2\sigma^2}\|x\|^2}dx $$
Observations
- The case, $h=0$ which corresponds to the Gaussian measure of a hemi-sphere, is well-known (see here, for example) to equal $$ I_{n,\sigma}(0) = \frac{1}{2}\frac{\gamma(n/2,1/(2\sigma^2))}{\Gamma(n/2)} \sim \frac{1}{2}\sqrt{\sigma n}, $$ where $\gamma(s, x) := \int_{0}^x e^{-t}t^{s-1}dt$ is the lower incomplete gamma function and $\Gamma(s):=\gamma(s,\infty)$ is the usual gamma function.