Basel problem solved by Euler is: $$ \sum_{k=1}^{\infty} \frac{1}{k^2}=\frac{\pi^2}{6} $$ Now , I want to know what is $$ \frac{1}{2\cdot 3}+\frac{1}{5\cdot 7}+\frac{1}{11\cdot 13}+\frac{1}{17\cdot 19}+\frac{1}{23\cdot 29}+ \dots = \sum_{k=1}^{\infty} \frac{1}{p_{2k-1}\cdot p_{2k}} == ? $$ where $p_k$ is the $k$'th prime. I tried writing a script
<script async>
const primes_first_n10000=[null,2, 3, 5, 7, 11, 13,..., 104711, 104717, 104723, 104729];
let p =primes_first_n10000,n=800;
let a=1n,b=6n;
let t=6n;
for (let k=3;k<n;k+=2) {
t=BigInt(p[k]*p[k+1])
console.log(t)
a=a*t+b
b*=t;
}
//console.log(a,'/',b/15n);
// a/(b/15)===3.2===16/5 ?
console.log(a/16n,'---',b/75n);
</script>
I guess that $\sum_{k=1}^{\infty} \frac{1}{p_{2k-1}\cdot p_{2k}}=\frac{16}{75}$ , however I'm not sure! Could you tell me the answer: what does the sum converge to?
#sagemath code
var('k')
#s=sum(1/k^2, k, 1, oo);print(s)
s= sum(N(1/(nth_prime(k)*nth_prime(k+1)),100) for k in range(1,80000,2))
print(N(s,100),N(pi/s,100))
print(N(pi/15,100))
print(N(s*15,100))
Out: (0.21042571723113630717490968408, 14.929699159057624632476407160)
0.20943951023931954923084289222
3.1563857584670446076236452612