The definition of a Hilbert space is a complete inner product space. I am struggling to imagine what an incomplete inner product space would look like, especially since inner products by definition must be maps on vector spaces whose scalar fields are either $\mathbb R$ or $\mathbb C$. Since $\mathbb R$ and $\mathbb C$ are complete and inner products are (sesqui)linear, it seems that any inner product must be complete. Is the definition of Hilbert space redundant?
In short, what's an example of an inner product space that is not complete?
It seems one of the following must be the case:
All inner product spaces are complete, and the definition of Hilbert space is redundant.
Inner products can be defined on more general fields than $\mathbb R$ and $\mathbb C$, for example $\mathbb Q$ and other subfields of $\mathbb R$. The definition of Hilbert space simply rules out these incomplete subfields from consideration.
There exist genuine inner product spaces over $\mathbb R$ and/or $\mathbb C$ that are not complete, which would be the most interesting and unexpected situation.