1

If $A$ and $B$ are measurable, then there is an equality: $\lambda(A)+\lambda(B)=\lambda(A \cup B)+\lambda(A \cap B)$. But is $\lambda^*(A \cap B) + \lambda^*(A \cup B) \leq \lambda^*(A) + \lambda^*(B)$ true for any sets $A$ and $B$.

A.Kat
  • 25

0 Answers0