The number of $3 \times 3$ matrices $A,$ with entries from the set $\{-1,0,1\}$ such that the sum of the diagonal elements of $AA^{T}$ is $3$, is __ .
What I tried:
Let $\displaystyle A=\begin{pmatrix} a& b & c\\ d& e & f \\ g& h & i \end{pmatrix}$ and $\displaystyle A^{T}=\begin{pmatrix} a& d & g \\ b& e & h \\ c & f & i \end{pmatrix}$
$$AA^{T}=\begin{pmatrix} \sum a^2 & .. & ..\\ .. & \sum d^2 &.. \\ ..& ...& \sum g^2 \end{pmatrix}$$
Given $a^2+b^2+c^2+d^2+e^2+f^2+g^2+h^2+i^2=3$
given $a,b,c,d,e,f,g,h,i\in \{-1,0,1\}$
Out of $ 9 ,$ any three is $1$ and rest all are zero(like $1,1,1,0,0,0,0,0,0$)
$$\binom{9}{3}\cdot \frac{9!}{6!\cdot 3!}=$$
but answer is different. How do I solve it? Help me, please.