For what values of $a\in \mathbb{R}$ does this series converge or diverge?
$$\sum \frac{\sin(ka)}{\log(k)}$$
Clearly for $a=\pi n$ with $n\in \mathbb{Z}$ the series converges because $\sin(ka)=0$, but I do not know how to continue.
For what values of $a\in \mathbb{R}$ does this series converge or diverge?
$$\sum \frac{\sin(ka)}{\log(k)}$$
Clearly for $a=\pi n$ with $n\in \mathbb{Z}$ the series converges because $\sin(ka)=0$, but I do not know how to continue.
You can conclude it based on Abel partial summation (The result is termed as generalized alternating test or Dirichlet test). We will prove the generalized statement first.
Consider the sum $S_N = \displaystyle \sum_{n=1}^N a(n)b(n)$. Let $A(n) = \displaystyle \sum_{n=1}^N a(n)$. If $b(n) \downarrow 0$ and $A(n)$ is bounded, then the series $\displaystyle \sum_{n=1}^{\infty} a(n)b(n)$ converges.
First note that from Abel summation, we have that $$\sum_{n=1}^N a(n) b(n) = \sum_{n=1}^N b(n)(A(n)-A(n-1)) = \sum_{n=1}^{N} b(n) A(n) - \sum_{n=1}^N b(n)A(n-1)\\ = \sum_{n=1}^{N} b(n) A(n) - \sum_{n=0}^{N-1} b(n+1)A(n) = b(N) A(N) - b(1)A(0) + \sum_{n=1}^{N-1} A(n) (b(n)-b(n+1))$$ Now if $A(n)$ is bounded i.e. $\vert A(n) \vert \leq M$ and $b(n)$ is decreasing, then we have that $$\sum_{n=1}^{N-1} \left \vert A(n) \right \vert (b(n)-b(n+1)) \leq \sum_{n=1}^{N-1} M (b(n)-b(n+1))\\ = M (b(1) - b(N)) \leq Mb(1)$$ Hence, we have that $\displaystyle \sum_{n=1}^{N-1} \left \vert A(n) \right \vert (b(n)-b(n+1))$ converges and hence $$\displaystyle \sum_{n=1}^{N-1} A(n) (b(n)-b(n+1))$$ converges absolutely. Now since $$\sum_{n=1}^N a(n) b(n) = b(N) A(N) + \sum_{n=1}^{N-1} A(n) (b(n)-b(n+1))$$ we have that $\displaystyle \sum_{n=1}^N a(n)b(n)$ converges.
In your case, $a(n) = \sin(an)$. Hence, $$A(N) = \displaystyle \sum_{n=1}^N a(n) = \dfrac{\sin(a(N+1)/2) \sin(aN/2)}{\sin(a/2)} \leq \csc(a/2)$$ when $a\neq 2m \pi$ is bounded. If $a=2 m \pi$, then $a(n)$ is trivially $0$ and hence again it is bounded. Also, $b(n) = \dfrac1{\log(n)}$ is a monotone decreasing sequence converging to $0$.
Hence, we have that $$\sum_{n=1}^N \dfrac{\sin(an)}{\log n}$$ converges for all $a \in \mathbb{R}$.