I saw this problem in a 'classical algebra' textbook:
If $y=2x^2-1$ prove that under certain condition we have:
$\frac{1}{x^2}+\frac{1}{2x^4}+\frac{1}{3x^6}+ . . . =\frac{2}{y}+\frac{2}{3y^3}+\frac{2}{5y^5}+ . . .$
My attempt:
$\ln (1-\frac{1}{x^2})=-(\frac{1}{x^2}+\frac{1}{2x^4}+\frac{1}{3x^6} + . . .)$
$2\ln(1+\frac{1}{y})=-(\frac{1}{y^2}+\frac{1}{2y^4}+\frac{1}{3y^6} + . . .) + (\frac{2}{y}+\frac{2}{3y^3}+\frac{2}{5y^5}+ . . .)$
Therefore:
$ \ln (1+\frac {1}{y})^2+\ln(1-\frac{1}{x^2})+\ln(1-\frac{1}{y^2})=0$
$\ln (1+\frac {1}{y})^2(1-\frac{1}{y^2})=\ln(1-\frac{1}{x^2})^{-1}$
$(1+\frac {1}{y})^2(1-\frac{1}{y^2})=(\frac{x^2}{x^2-1})$
Now to find condition should I substitute $y=2x^2-1$ and find a relation for x?