$\!\!\bmod 107\!:\ \dfrac{\overbrace{10^{105}}^{\large\color{#c00}{1/10}}-1}{9}\equiv \dfrac{-1}{10}\equiv \dfrac{-11}{110}\equiv\dfrac{96}3\equiv \bbox[5px,border:1px solid #c00]{32}\ $ by $\rm\color{#c00}{Fermat}$ and Gauss's algorithm.
Alternatively, equivalently, eliminating all fractions
$\begin{align}\!\!\bmod 107\!:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9x&\equiv 10^{\large 105}-1\\
\overset{\large \times\ 10}\iff\ \ 90x &\equiv 10^{\large106}-10\equiv -9\ \ \ {\rm by\ little\ Fermat}\\
\overset{\large\div\ 9}\iff\ \ 10x&\equiv -1\\
\overset{\large\times\ 11}\iff 110x&\equiv -11,\ \ \text{by scaling as in Gauss's algorithm}\\
\overset{\large \equiv}\iff\ \ \ \ 3x&\equiv 96\ \ \ \ \ \ \ {\rm by}\ \ 110\equiv 3,\, -11\equiv 96\\
\overset{\large \div\ 3}\iff\ \ \ \ \ \ x&\equiv 32
\end{align}$
where we used that congruences are preserved (remain equivalent) when scaled by units (invertibles), i.e. multiplying or dividing a congruence by an integer coprime to the modulus yields an equivalent congruence, since if $\, \color{#0a0}{(n,c)=1}\,$ then $\bmod n\!:\ ca\equiv cb\iff a\equiv b,\ $ because, by Euclid's lemma, $\,\color{#0a0}{n\mid c}\,(a-b)\iff n\mid a-b$.