0

Why the binomial expansion of $(1+x)^n$, $n$ belongs to negative integer or fraction, is $$ 1+nx+n(n-1)x^2/2........ $$ I admit the expansion when $n$ is positive integer, is because of Pascal triangle.

gt6989b
  • 54,422

1 Answers1

0

Well, for a negative integers $n$ you just need a simple substitution , for example assume we want to expand $1+x$ for $n=-3$, based on the formula we have:

setting $-3=n$ follows: $$\sum_{k=0}^{∞}{{n}\choose{k}}x^{k}$$$$={{n}\choose{0}}x^{0}+{{n}\choose{1}}x^{1}+{{n}\choose{2}}x^{2}+...$$$$=\frac{n!}{0!n!}x^{0}+\frac{n!}{1!\left(n-1\right)!}x^{1}+\frac{n!}{2!\left(n-2\right)!}x^{2}$$$$=1+nx+\frac{n\left(n-1\right)}{2}x^{2}$$

Wow substitute back:

$$=1-3x+6x^{2}-...$$

Also duo to the convergence we need the upper limit of the sum to be $∞$