Let $(X,\mathcal F_{X})$ and $(X,\mathcal F_{Y})$ measurable spaces and $F\in \mathcal F_{X}\otimes\mathcal F_{Y}$. Let $L^\infty(Y)$ be the space of bounded measurable functions from $(Y,\mathcal{F}_Y)$ to $\mathbb{R}$, equipped with the sup metric, and let $\mathcal{F}$ its Borel $\sigma$-algebra.
Consider the function $$f :X\to L^\infty(Y), x\mapsto(y\mapsto\chi_F(x,y))$$ where $\chi_F:X\times Y\to\mathbb{R}$ is the indicator function of $F$.
Is it true that $f$ is measurable from $(X,\mathcal{F}_X)$ to $(L^\infty(Y),\mathcal{F})$?