Recall the integrals below from the coefficients of the fourier series of Loggamma function
$$
\begin{align}
&\int_{0}^{1}\log(\Gamma(x))\,dx=\frac{\ln(2 \pi)}{2} \tag{1}\\
& \\
&\int_{0}^{1}\log(\Gamma(x))\cos(2 \pi k x)\,dx=\frac{1}{4 k} \tag{2}\\
&\\
&\int_{0}^{1}\log(\Gamma(x))\sin(2 \pi k x)\,dx=\frac{\gamma+\log(2 \pi k)}{2 \pi k} \tag{3}
\end{align}
$$
Also recall Kummer´s fourier series for the Loggamma function
$$\log(\Gamma(x))=\frac{\log(2 \pi)}{2}+ \sum_{k=1}^{\infty}\frac{1}{2k}\cos(2 \pi k x) + \sum_{k=1}^{\infty}\frac{\gamma+\log(2 \pi )+\ln(k)}{ \pi k}\sin(2 \pi k x) \tag{4}$$
Multiplying both sides of (4) by $\log(\Gamma(x))$ and integrating from zero to one and considering the results $(1)-(3)$ we obtain
$$\begin{aligned}
\int_{0}^{1}\log^2(\Gamma(x))\,dx&=\frac{\log(2 \pi)}{2}\int_{0}^{1}\log(\Gamma(x)) \,dx+ \sum_{k=1}^{\infty}\frac{1}{2k}\int_{0}^{1}\log(\Gamma(x))\cos(2 \pi k x)\,dx + \sum_{k=1}^{\infty}\frac{\gamma+\log(2 \pi )+\ln(k)}{ \pi k}\int_{0}^{1}\log(\Gamma(x))\sin(2 \pi k x)\,dx\\
&=\frac{\log^2(2 \pi)}{4}+\sum_{k=1}^{\infty}\frac{1}{2k}\frac{1}{4k}+\sum_{k=1}^{\infty}\frac{\gamma+\log(2 \pi )+\ln(k)}{ \pi k}\left(\frac{\gamma+\log(2 \pi )+\ln(k)}{2 \pi k} \right)\\
&=\frac{\log^2(2 \pi)}{4}+\frac18 \zeta(2)+ \frac{\left(\gamma+\log(2 \pi ) \right)^2}{2 \pi^2}\zeta(2)+\frac{\left(\gamma+\log(2 \pi ) \right)}{2 \pi^2}\sum_{k=1}^{\infty}\frac{\ln(k)}{k^2}+\frac{\left(\gamma+\log(2 \pi ) \right)}{2 \pi^2}\sum_{k=1}^{\infty}\frac{\ln(k)}{k^2}+\frac{1}{2 \pi^2}\sum_{k=1}^{\infty}\frac{\ln^2(k)}{k^2}\\
&=\frac{\log^2(2 \pi)}{4}+\frac{\log^2(2 \pi )}{12}+\frac{\pi^2}{48}+ \frac{\gamma^2}{12}+\frac{\gamma\log(2 \pi ) }{6}-\frac{\left(\gamma+\log(2 \pi ) \right)}{2 \pi^2}\zeta^\prime(2)-\frac{\left(\gamma+\log(2 \pi ) \right)}{2 \pi^2}\zeta^\prime(2)+\frac{\zeta^{\prime \prime}(2)}{2 \pi^2}\\
&= \frac{\gamma^2}{12}+\frac{\pi^2}{48}+\frac{\gamma\log(2 \pi ) }{6}+\frac{\log^2(2 \pi)}{3}-\frac{\left(\gamma+\log(2 \pi ) \right)}{ \pi^2}\zeta^\prime(2)+\frac{\zeta^{\prime \prime}(2)}{2 \pi^2} \qquad \blacksquare\\
\end{aligned}$$
If we now let $x \to 1-x$ in $(4)$ we obtain
$$\ln\left(\Gamma(1-x)\right)=\frac{\ln\left(2 \pi\right)}{2}+ \sum_{k=1}^{\infty}\frac{1}{2k}\cos\left(2 \pi k x\right) - \sum_{k=1}^{\infty}\frac{\gamma+\ln\left(2 \pi k\right)}{ \pi k}\sin\left(2 \pi k x \right) \tag{5}$$
Now we multiply (6) by $\ln\left(\Gamma(x)\right)$ and integrate from $0$ to $1$
$$
\begin{aligned}
\int_0^1\ln\left(\Gamma(x)\right)\ln\left(\Gamma(1-x)\right)\,dx&=\frac{\ln\left(2 \pi\right)}{2}\int_0^1\ln\left(\Gamma(x)\right)\,dx+ \sum_{k=1}^{\infty}\frac{1}{2k}\int_0^1\ln\left(\Gamma(x)\right)\cos\left(2 \pi k x\right)\,dx - \sum_{k=1}^{\infty}\frac{\left(\gamma+\ln\left(2 \pi \right)+\ln(k)\right)}{ \pi k}\int_0^1\ln\left(\Gamma(x)\right)\sin\left(2 \pi k x \right)\,dx\\
&=\frac{\log^2(2 \pi)}{4}+\sum_{k=1}^{\infty}\frac{1}{2k}\frac{1}{4k}-\sum_{k=1}^{\infty}\frac{\left(\gamma+\log(2 \pi )+\ln(k)\right)}{ \pi k}\left(\frac{\gamma+\log(2 \pi )+\ln(k)}{2 \pi k} \right)\\
&=\frac{\log^2(2 \pi)}{4}+\frac18 \zeta(2)- \frac{\left(\gamma+\log(2 \pi ) \right)^2}{2 \pi^2}\zeta(2)-\frac{\left(\gamma+\log(2 \pi ) \right)}{2 \pi^2}\sum_{k=1}^{\infty}\frac{\ln(k)}{k^2}-\frac{\left(\gamma+\log(2 \pi ) \right)}{2 \pi^2}\sum_{k=1}^{\infty}\frac{\ln(k)}{k^2}-\frac{1}{2 \pi^2}\sum_{k=1}^{\infty}\frac{\ln^2(k)}{k^2}\\
&=\frac{\log^2(2 \pi)}{4}+\frac{\pi^2}{48} - \frac{\left(\gamma+\log(2 \pi ) \right)^2}{12 }+\frac{\zeta^\prime(2)\left(\gamma+\log(2 \pi ) \right)}{ \pi^2}-\frac{\zeta^{\prime \prime}(2)}{2 \pi^2} \qquad \blacksquare\\
\end{aligned}
$$