In particular, I am interested in $\xi = z\sqrt{i}$, with $z>0$.
To begin with, formal considerations, such as
$$\begin{align*}\mathcal{L}^{-1}\!\left[F(s)\right]=\frac{1}{2i}\,\mathcal{L}^{-1}\!\left[\frac{e^{i\xi\sqrt{s}}}{\sqrt{s}}\right]-\frac{1}{2i}\,\mathcal{L}^{-1}\!\left[\frac{e^{-i\xi\sqrt{s}}}{\sqrt{s}}\right]=\frac{e^{\frac{1}{4t}(-i\xi)^2}}{2i\,\sqrt{\pi t}}-\frac{e^{\frac{1}{4t}(i\xi)^2}}{2i\,\sqrt{\pi t}}=0,\end{align*}$$
and similar ones all seem to imply $\mathcal{L}^{-1}[F(s)]=0$.
More rigorously, invoking the Bromwich inversion formula
$$\mathcal{L}^{-1}\!\left[F(s)\right] = \int_{\alpha-i\infty}^{\alpha+i\infty}F(s)\,e^{st}ds,$$
and applying Cauchy's integral theorem to the closed contour depicted below, I obtain
$$\mathcal{L}^{-1}\!\left[F(s)\right] = \lim_{T\to\infty} I_{AB} = - \lim_{\epsilon\to0^+}\big(I_{EH}+I_{KL}\big).$$
The branch cut of $\sqrt{s}$ is taken along the negative real axis. Note as well that the integrals arising from the arcs vanish in the limit $R\to\infty$ by Jordan's Lemma (i.e., considering only $\xi=z\sqrt{i}$, $z>0$).
However,
$$\begin{align*}I_{EH}+I_{KL}&=\int_{-\infty}^0\frac{\sin\big[z\sqrt{i}\,\sqrt{x+i\epsilon}\big]}{\sqrt{x+i\epsilon}}\,e^{xt}+\int_0^{-\infty}\frac{\sin\big[z\sqrt{i}\,\sqrt{x-i\epsilon}\big]}{\sqrt{x-i\epsilon}}\,e^{xt}\\[5pt]&=\int_0^{\infty}\frac{\sin\big[z\sqrt{i}\,\sqrt{i\epsilon-u}\big]}{\sqrt{i\epsilon-u}}\,e^{-ut}-\int_0^{\infty}\frac{\sin\big[z\sqrt{i}\,\sqrt{-u-i\epsilon}\big]}{\sqrt{-u-i\epsilon}}\,e^{-ut}\end{align*},$$
letting $u=-x$ in each integral above. But,
$$\int_0^{\infty}\frac{\sin\big[z\sqrt{i}\,\sqrt{\pm i\epsilon-u}\big]}{\sqrt{\pm i\epsilon-u}}\,e^{-ut} = \frac{\sin\big[(-1)^{3/4}z\sqrt{u}\big]}{i\sqrt{u}}\pm\mathcal{O}(\epsilon),$$
consequently
$$\mathcal{L}^{-1}\!\left[F(s)\right] = - \lim_{\epsilon\to0^+}\big(I_{EH}+I_{KL}\big) = 0\qquad :($$
I am expecting $\mathcal{L}^{-1}\!\left[F(s)\right]$ to be a distribution.