$$\int\dfrac{2x - 3}{\left(3x^2 - 2x + 4\right)\sqrt{x^2 - 3x + 1}}\,\mathrm dx\equiv2\int\dfrac{2x - 3}{\left(3x^2 - 2x + 4\right)\sqrt{\left(2x - 3\right)^2 - 5}}\,\mathrm dx$$
Let $u = 2x - 3\implies\mathrm du = 2\,\mathrm dx$. Therefore,
$$\int\dfrac{2x - 3}{\left(3x^2 - 2x + 4\right)\sqrt{\left(2x - 3\right)^2 - 5}}\,\mathrm dx\equiv2\int\dfrac u{\left(3u^2 + 14u + 31\right)\sqrt{u^2 - 5}}\,\mathrm du$$
Let $u = \sqrt 5\sec(v)\implies \mathrm du = \sqrt5\sec(v)\tan(v)\,\mathrm dv$. Therefore,
$$\begin{align}\int\dfrac u{\left(3u^2 + 14u + 31\right)\sqrt{u^2 - 5}}\,\mathrm du&\equiv\int\dfrac{5\sec^2(v)\tan(v)}{\left(15\sec^2(v)+ 14\sqrt5\sec(v) + 31\right)\sqrt{5\sec^2(v) - 5}}\,\mathrm dv \\ &\stackrel{\sec^2(v) = 1 + \tan^2(v)}=\sqrt5\int\dfrac{\sec^2(v)}{15\sec^2(v) + 14\sqrt5\sec(v) + 31}\,\mathrm dv\end{align}$$
Perform tangent half-angle substitution.
$$\int\dfrac{\sec^2(v)}{15\sec^2(v) + 14\sqrt5\sec(v) + 31}\,\mathrm dv\equiv\int\dfrac{\left(1 + \tan^2\left(\frac v2\right)\right)^2}{\left(1 - \tan^2\left(\frac v2\right)\right)^2\left(\frac{15\left(1 + \tan^2\left(\frac v2\right)\right)^2}{\left(1 - \tan^2\left(\frac v2\right)\right)^2} + \frac{14\sqrt5\left(1 + \tan^2\left(\frac v2\right)\right)}{1 - \tan^2\left(\frac v2\right)} + 31\right)}\,\mathrm dv$$
Let $t = \tan\left(\dfrac v2\right)\implies\mathrm dv = \dfrac2{1 + t^2}\,\mathrm dt$. Therefore,
$$\begin{align}&\int\dfrac{\left(1 + \tan^2\left(\frac v2\right)\right)^2}{\left(1 - \tan^2\left(\frac v2\right)\right)^2\left(\frac{15\left(1 + \tan^2\left(\frac v2\right)\right)^2}{\left(1 - \tan^2\left(\frac v2\right)\right)^2} + \frac{14\sqrt5\left(1 + \tan^2\left(\frac v2\right)\right)}{1 - \tan^2\left(\frac v2\right)} + 31\right)}\,\mathrm dv\\&\equiv-\int\dfrac{1 + t^2}{\left(7\sqrt5 - 23\right)t^4 + 16t^2 - 7\sqrt5 - 23}\,\mathrm dt\end{align}$$
Now, factor the denominator and perform partial fraction decomposition.