Prove that $$I_{\limsup A_n} = \limsup I_{A_n}$$
To prove this, we need to prove $I_{\limsup A_n}(\omega) = \limsup I_{A_n}(\omega)$, for each $\omega$ in sample space. But I am getting trouble to understand what $I_{\limsup A_n}(\omega)$ implies.
$I_A(\omega)=1$ if $\omega\in A$ and $0$ otherwise.