0

If we define $\zeta (s)$ by $$\zeta (s)\overset{\text{def}}{=}\sum_{n\gt 0}n^{-s},\, \operatorname{Re}s\gt 1,$$ does it follow from the definition that e.g. $\zeta (-1)=-\frac{1}{12}$?

Or is it necessary to use $$\zeta (s) \overset{\text{def}}{=} \begin{cases} \sum_{n\gt 0}n^{-s} &\mbox{if } \operatorname{Re}s\gt 1 \\ 2^s\pi ^{s-1}\sin\frac{\pi s}{2}\,\Gamma (1-s)\sum_{n\gt 0}n^{s-1}& \mbox{if }\operatorname{Re}s\le 0\\ \frac{1}{1-2^{1-s}}\sum_{n\gt 0}(-1)^{n+1}n^{-s}& \mbox{otherwise}\end{cases}$$ and then say that $\zeta (-1)=-\frac{1}{12}$?

0 Answers0