-1

Given:
$\alpha\;$ is a $\;\underline{\text{fixed}}\;$ real number.

$\displaystyle \frac{\alpha}{2\pi}\;$ is irrational.

$K(0,1)\;$ denotes the circle of radius 1 centered at the origin.
For $\;z \,\in \,\mathbb{C} \;\text{and} \;\epsilon \,\in \,\mathbb{R^+}, \;\Delta(z, \epsilon)\;$ denotes
the open disk centered at $\;z\;$ of radius $\;\epsilon.$
$\langle a_n\rangle\;$ denotes the infinite sequence of complex numbers
$\;\{ \,a_1, \,a_2, \,a_3, \cdots \,\}\;$ given by $\;a_n = e^{in\alpha}.$
$z \,\in \,\mathbb{C}\;$ is an accumulation point of % $\;\langle a_n\rangle \;\Leftrightarrow\;$
$\forall \;\epsilon > 0, \;\Delta(z, \epsilon)\;$ contains $\;a_n\;$ for infinitely many positive integers $\;n$.

To Prove:
Every element in $\;K(0,1)\;$ is an accumulation point of $\;\langle a_n\rangle.$

My Request:
The next section gives my attempt to prove this. Is my proof valid?
If not, where did I go wrong?

My Attempt:

Previous flaws corrected. Is the proof now valid?
See also Mohammed M. Zerrak's answer, a much shorter proof.
See also my comment to his shorter proof.
I'm going to explore abandoning the $\text{Arc}(\theta_1, \theta_2)\;$ approach used in this attempt in favor of directly using chord length. Perhaps that will result in an (alternative) shorter proof.

For any real number $\;\theta,\;$ let $\;P(\theta)\;$ denote $\;\lfloor (\theta/2\pi) \rfloor \;$ (i.e. the floor function).
That is, $\;P(\theta)$ is the largest integer less than or equal to $\;(\theta/2\pi)\;$.
Let $\;Q(\theta)\;$ denote $\theta \;-\; [2\pi\times P(\theta)] \;\Rightarrow\; Q(\theta) \,\in \,[0,2\pi).$

Note: Since $\;(\alpha/2\pi)\;$ is irrational, $\;[Q(\alpha)/(2\pi)]\;$ is also irrational,
which implies that $\;[Q(\alpha)/(2\pi)] \;\times $ (any integer) is also irrational.

Define an arc function: $\;\text{Arc}(\theta_1, \theta_2)\;$ as follows:
If $\;| \,Q(\theta_1) - Q(\theta_2) \,| \;<\; \pi,\;$ then $\;\text{Arc}(\theta_1, \theta_2) \;=\; | \,Q(\theta_1) - Q(\theta_2) \,|.$
Else, $\;\text{Arc}(\theta_1, \theta_2) \;=\; 2\pi \;-\; | \,Q(\theta_1) - Q(\theta_2) \,|.$
As defined, $\;\text{Arc}(\theta_1, \theta_2)\;$ measures the shortest arc on the unit circle
between the angles $\;\theta_1 \;\text{and} \;\theta_2.$

For $\;k,l \,\in \,\mathbb{Z}, \;\;\theta_1,\theta_2 \,\in \,\mathbb{R}, \;\;Q(\theta_1 + 2k\pi) = Q(\theta_1) \;\;\text{and} \;\;Q(\theta_2 + 2l\pi) = Q(\theta_2).$
$[E_1]:\;$ Therefore, $\;\text{Arc}(\theta_1 + 2k\pi, \theta_2 + 2l\pi) \;=\; \text{Arc}(\theta_1, \theta_2).$
$[E_2]:\;$ Therefore, $\;\text{Arc}[Q(\theta_1), Q(\theta_2)] \;=\; \text{Arc}(\theta_1, \theta_2).$

Given $\;\theta_1,\theta_2,\theta_3 \,\in \,\mathbb{R} <br> \;\;Q(\theta_1 + \theta_3)\;$ equals either $\;[Q(\theta_1) + Q(\theta_3)]\;$ or $\;[Q(\theta_1) + Q(\theta_3) - 2\pi].$
Similar analysis applies when adding $\;\theta_2\;$ to $\;\theta_3.$
Therefore, by combined and repeated use of $\;[E_1]\;$ and $\;[E_2],\;$
$[E_3]:\; \text{Arc}(\theta_1 + \theta_3, \theta_2 + \theta_3) \;=\; \text{Arc}(\theta_1, \theta_2).$

Also, $\;\forall \;N \,\in \,\mathbb{Z^+}$
$\{ \,Q(N\theta) = N\theta - (2\pi)P(N\theta) \;\;\wedge\;\; NQ(\theta) = N\theta - N(2\pi)P(\theta) \,\} \;\Rightarrow $
$N[Q(\theta)] \;\equiv\; Q(N\theta) \;(\text{mod} \,2\pi).$
$[E_4]:\;$ Therefore $\;N[Q(\theta)] \;<\; 2\pi \;\Rightarrow\; N[Q(\theta)] \;=\; Q(N\theta).$

Also, directly from the definition of $\;\text{Arc}(\theta_1, \theta_2),:$
$[E_5]:\: Q(\theta) < \pi \;\Rightarrow\; \text{Arc}[0, Q(\theta)] = Q(\theta).$

Given a sector of angle $\;\theta$ in the unit circle,
its chord length is $\;2\sin(\theta/2),$ and its arc length is $\;\theta$.
Let $\;f(\theta) \;\equiv\; 2\sin[\theta/2] - \theta \;\Rightarrow\; f^{\prime}(\theta) \;=\; \cos[\theta/2] - 1.$
Thus, $\;f(0) = 0\;$ and $\;f^{\prime}(0) = 0.$
Also $\;\forall \;\theta \,\in \,(0, \pi/2], \;f^{\prime}(\theta) < 0.$
Therefore, $\;\forall \;\theta \,\in \,[0, \pi/2],\;$ its chord length is $\;\leq\;$ its arc length.

Therefore, for any $\;\epsilon \,\in \,(0, \pi/2),\;$
if $\;\text{Arc}(\theta_1, \theta_2) \;<\; \epsilon\;$ then the shortest chord between $\;e^{i\theta_1}\;$ and $\;e^{i\theta_2}\;$
is less than $\;\epsilon,\;$ and consequently, $\;e^{i\theta_2} \,\in \,\Delta(e^{i\theta_1}, \epsilon).$

For a given $\;e^{i\theta} \,\in \,K(0,1),\;$ and $\;\epsilon_0, \epsilon_1 \,\in \mathbb{R^+} \;\ni \;\epsilon_0 < \epsilon_1,$
$\;\Delta(e^{i\alpha}, \epsilon_0) \subseteq \Delta(e^{i\theta}, \epsilon_1).$
Therefore, if $\Delta(e^{i\theta}, \epsilon_0)\;$ contains $\;a_n\;$ for infinitely many
positive integers n, then so will $\Delta(e^{i\theta}, \epsilon_1).$

Consequently, when considering whether a specific value $\;e^{i\theta}\;$ is an accumulation point, the values of $\;\epsilon\;$ considered need not exceed an arbitrary positive number. In this proof, only values of $\;\epsilon\;$ in the range $\;(0, \pi/2)\;$ will be considered. Therefore, by the previous analysis, the function $\;\text{Arc}(\theta_1, \theta_2)\;$ may be used instead of measuring the shortest chord between $\;e^{i\theta_1}\;$ and $\;e^{i\theta_2}.$

That is, for a given $\;e^{i\theta} \,\in \,K(0,1),\;$ and a given $\;\epsilon \,\in \,(0, \pi/2),$
if there exist an infinite number of positive integers $\;n\;$
such that $\;\text{Arc}(\theta, n\alpha) \;<\; \epsilon,\;$
then there exist an infinite number of positive integers $\;n\;$
such that the shortest chord between $\;e^{i\theta}\;$ and $\;e^{in\alpha} \;<\; \epsilon,\;$
which implies that there exist an infinite number of positive integers $\;n\;$
such that $\;a_n \,\in \,\Delta(e^{i\theta}, \epsilon).$

Thus, to show that any element $\;e^{i\theta} \,\in \,K(0,1)\;$ is an accumulation point,
it is sufficient to exhibit an algorithm that may be applied against
any $\underline{\text{fixed}} \;\;\epsilon \,\in (0, \pi/2)\;$ such that:
(1) the algorithm is specific to the specific element $\;e^{i\theta}\;$ and specific value $\;\epsilon.$
(2) the algorithm generates an infinite strictly increasing sequence of positive integers $\;\{ \,u_1, \,u_2, \,u_3, \cdots \,\}.\;$
(3) for each positive integer $\;n\;$ in this sequence, $\;\text{Arc}(\theta, n\alpha) \;<\; \epsilon.$

$\underline{\text{algorithm}}$
Let $\;M\;$ be any positive integer $\;>\; (2\pi/\epsilon) \;\Rightarrow\; \epsilon \;>\; (2\pi)/M.$
Divide $\;[0,2\pi)$ into $\;M\;$ regions, each of width $\;(2\pi)/M \;<\; \epsilon.$
Let $\;S_1 \;\equiv\; \{ \,1, \,2, \,\cdots, \,(M+1) \,\}.$
Consider the values
$\;Q(1\alpha), \,Q(2\alpha), \,\cdots Q([M+1]\alpha).$
Two of these values must fall into the same region.
Therefore, there must be two positive integers $\;j,k \,\in \,S_1\;: j < k\;$
such that $\;0 \leq\; \left| \,Q(k\alpha) \;-\; Q(j\alpha) \,\right| \;<\; \epsilon \;<\; (\pi/2) $

This implies that
$0 \leq\; \left| \,[k\alpha - 2\pi P(k\alpha)] \;-\; [j\alpha - 2\pi P(j\alpha)] \,\right| \;<\; \epsilon \;<\; (\pi/2) \;\Rightarrow $
$0 \leq\; \left| \,(k - j)\alpha - 2\pi [P(k\alpha) - P(j\alpha)] \,\right| \;<\; \epsilon \;<\; (\pi/2) \;\Rightarrow $
$\exists \;\delta \,\in \,[0, \epsilon) \;\ni (k - j)\alpha - 2\pi [P(k\alpha) - P(j\alpha)] \;=\; \pm\delta \;\Rightarrow $
$(k-j)\alpha \;\equiv\; \pm\delta \;(\text{mod} \,2\pi) \;\Rightarrow $
$Q[(k-j)\alpha] \;=\; \delta \;\;$ or $\;\;Q[(k-j)\alpha] \;=\; (2\pi - \delta).$

With $\;k > j,\;$ suppose that $\;[(k -j)\alpha] \;\equiv\; 0 \;(\text{mod} \,2\pi).$
Then, $\;\exists \;R \,\in \mathbb{Z}\; \ni [(k -j)\alpha] \;=\; 2\pi R \;\Rightarrow\; \alpha/(2\pi) \;=\; R/(k-j).$
This is a contradiction, since $\;\alpha/(2\pi)\;$ is assumed irrational.
Therefore, $\;0 \;<\; \delta \;<\; \epsilon \;<\; \pi/2.$

$\underline{\text{Case 1:}\;Q[(k-j)\alpha] \;=\; \delta}.$
If $\;Q(\theta) \;<\; \delta\;$ then set $\;u_1 \;=\;(k-j) \;\Rightarrow\; \delta \;=\; Q(u_1\alpha) \;\Rightarrow $
$0 \;\leq\; Q(\theta) \;<\; Q(u_1\alpha) \;<\; \epsilon.$
Using $\;E_4, \,E_5,\;$ and $\;E_2,\;$ this implies that
$\text{Arc}[Q(\theta), Q(u_1\alpha)] \;=\; \text{Arc}[0, Q(u_1\alpha) - Q(\theta)] \;=\; Q(u_1\alpha) - Q(\theta) \;\Rightarrow $
$\text{Arc}[Q(\theta), Q(u_1\alpha)] \;<\; \epsilon \;\Rightarrow\; \text{Arc}(\theta, u_1\alpha) \;<\; \epsilon.$

If $\;Q(\theta) \;\geq\; \delta\;$ then set $\;N\;$ equal to the largest
positive integer such that $\;N\delta \leq Q(\theta)\;$
and set $\;u_1 \;=\; N(k-j).$
This will imply that $\;N\delta \leq Q(\theta) \;<\; (N + 1)\delta.$
Therefore, $\;NQ[(k-j)\alpha] \;\leq\; Q(\theta) \;<\; (N+1)Q[(k-j)\alpha].$
Using $\;E_1\leftrightarrow E_5,\;$ this implies that
$Q(u_1\alpha) \;\leq\; Q(\theta) \;<\; Q(u_1\alpha) + \delta \;\Rightarrow $
$\text{Arc}[Q(\theta), Q(u_1\alpha)] \;<\; \epsilon \;\Rightarrow\; \text{Arc}(\theta, u_1\alpha) < \epsilon.$

$\underline{\text{Case 2:}\;Q[(k-j)\alpha] \;=\; 2\pi - \delta}.$
If $\;2\pi - Q(\theta) \;>\; 2\pi - \delta\;$ then set $\;u_1 \;=\;(k-j).$
Otherwise, set $\;N\;$ equal to the largest positive integer
such that $(2\pi - N\delta) \geq Q(\theta)\;$ and set $\;u_1\;$ to $\;N(k-j).$
The analysis in Case 2 will then be very similar to Case 1,
so that (again) $\;\text{Arc}(\theta, u_1\alpha) < \epsilon.$

To compute $\;u_2,\;$ follow the exact same procedure used to compute $\;u_1\;$ except
let $\;S_2 \;\equiv\; \{ \,(u_1 + 1), \,(2u_1 + 2), (3u_1 + 3), \,\cdots, \,(M+1)u_1 + (M+1) \,\}.$
This will guarantee that when the $\;k\;$ and $\;j\;$ are found
that correspond to $\;S_2, \;|k - j| > u_1.$
This will guarantee that the computed $\;u_2\;$ will be greater than $\;u_1.\;$

This process may be repeated indefinitely, where $\;S_{(k+1)}\;$ is set to
$\{ \,(u_k + 1), \,(2u_k + 2), (3u_k + 3), \,\cdots, \,(M+1)u_k + (M+1) \,\}.$

Setting $S_{(k+1)}\;$ as above will guarantee that the
infinite sequence $\;\{ \,u_1, \,u_2, \,u_3, \,\cdots \,\},\;$ will be strictly increasing.
The procedure itself will guarantee that for each
element $\;u_k\;$ in the sequence,
$\;\text{Arc}(\theta, u_k\alpha) < \epsilon.$

Since this procedure may be followed for any
$\epsilon \,\in \,(0, \pi/2), \;e^{i\theta}\;$ is an accumulation point.
Since this procedure holds for any $\theta, $
every element in $\;K(0,1)\;$ is an accumulation point.

user2661923
  • 35,619
  • 3
  • 17
  • 39
  • 2
  • @MohammedM.Zerrak "Does this answer...". Yes and No. Although it does demonstrate denseness, linking denseness to accumulation points is too much to ask for someone totally ignorant of Topology, such as prospective readers or such as myself. Personally, I would have to study Topology for some time to be confident enough to accept denseness as an easy way to establish accumulation points. – user2661923 Feb 18 '20 at 19:51
  • Which part is not clear? $\langle a_n = e^{in\theta} \rangle$ is dense in $K(0,1)$, which means for any point $Q\in K(0,1)$ and any vicinity $V_{Q}(\varepsilon)$ of $Q$ of radius $\varepsilon>0$ we have $V_{Q}(\varepsilon) \bigcap \langle a_n = e^{in\theta} \rangle \ne \varnothing $. Now take $\varepsilon=\frac{1}{k}$ and you can construct a subset/sequence $(a_{n_k})_{n\in\mathbb{N}}$ with $Q$ as a limit point. So $Q$ is an accumulation point, and this happens for $\forall Q \in K(0,1)$. Right? – rtybase Feb 18 '20 at 20:07
  • @rtybase What you are commenting does seem clear; the problem is with me. First of all, I've recently perused several different proofs that $;\langle a_n\rangle = e^{in\theta};$ is dense in $;K(0,1),;$ I'm still uncomfortable enough to not be sure the results are valid. Secondly, although establishing a subsequence with Q as a limit point does seem equivalent to the definition of accumulation points that I was given, I (again) am not comfortable having an opinion on its validity. – user2661923 Feb 18 '20 at 20:59
  • It's quite likely that the definition of accumulation point you was given is equivalent to this one (also here). – rtybase Feb 18 '20 at 21:08

3 Answers3

1

$\mathbb{Z}\theta+\mathbb{Z}2\pi$ is dense in $\mathbb{R}$ given that $\theta/2\pi$ is irrational.That means that for every $\alpha$ in $\mathbb{R}$,there exists a sequence of $\mathbb{Z}\theta+\mathbb{Z}2\pi$ that converge to $\alpha$ : $(\phi(n)\theta+\psi(n)2\pi)_{n}$

Now because $e^{ix}$ is continuous $\mathbb{R}$, $(e^{i(\phi(n)\theta+\psi(n)2\pi)})_{n}$ coverges to $e^{i\alpha}$ but then this implies that $(e^{i\phi(n)\theta})_{n}$ converges to $e^{i\alpha}$, since this is true for every $\alpha$ in $\mathbb{R}$ we conclude that $e^{in\theta}$ has $K(0,1)$ as its accumulation points.

0

'' Note: Since $\;(\alpha/2\pi)\;$ is irrational, $\;[Q(\alpha)/(2\pi)]\;$ is also irrational,
which implies that $\;[Q(\alpha)/(2\pi)] \;\times $ (any integer) is also irrational. ''

I don't see why this is true

  • 1
    @MohammedMZerrak Q(α)/(2π)=α/(2π)−(2π)P(α)/(2π). The 2nd term on the right hand side is an integer. The first term on the right hand side is assumed irrational. Irrational - integer = irrational. Also, if irrational times integer_1 = rational_2, then irrational = rational_2/integer_1 : a contradiction. – user2661923 Feb 17 '20 at 01:47
  • @MohammedMZerrak clarification on previous comment, and clarification on assertion that you questioned in your answer: "...(any integer)..." : i intended any non-zero integer. The way I subsequently use the assertion in my proof, my weaker assertion is sufficient. I edited the query accordingly. – user2661923 Feb 17 '20 at 13:40
  • i see, I made the mistake of thinking that P(a) is defined using the floor function – Mohammed M. Zerrak Feb 17 '20 at 16:19
  • I think there is better and shorter proof of this result, I found yours to be unnecessarily long. – Mohammed M. Zerrak Feb 17 '20 at 16:22
  • "...shorter proof..." Interesting. Ironically, I found logic flaws in my proof which I am in the process of correcting; this will make the proof even longer. I would be very interested in a link to a shorter proof. After I correct my proof, I will explore abandoning the Arc$(\theta_1, \theta_2)$ approach and attempt a more direct approach via the formula for the chord of a sector on the unit circle. – user2661923 Feb 17 '20 at 18:41
  • Very interesting answer. Unfortunately, I understood almost none of it. I'm not familiar with the concept of something being "dense in $\mathbb{R}$" and I'm not familiar with the notation $(\cdots)_n.$ Could you please refer me to an online resource that I can use to decipher your answer? Alternatively, can you re-write your answer for someone who knows Calculus, but not much beyond that? – user2661923 Feb 17 '20 at 18:52
  • A subset X of R is said to be dense in R if for every x in R there is a sequence of numbers in X that converges to x, for example rational numbers are a dense subset of all real numbers. – Mohammed M. Zerrak Feb 17 '20 at 21:08
  • Thanks for the clarification, this helps. However : "$\mathbb{Z}\theta + \mathbb{Z}2\pi$ is dense in $\mathbb{R},$ given that $\theta/2\pi$ is irrational." How do you know this? Alternatively, what branch of math is this from? Also, I noticed that you suffixed several of your expressions with a small n. What is the significance of that? – user2661923 Feb 17 '20 at 21:53
  • That assertion comes from general topology . – Mohammed M. Zerrak Feb 17 '20 at 21:56
  • Also, I noticed that you suffixed several of your expressions with a small n. What is the significance of that? it simply refers to the sequence as whole instead of the nth term – Mohammed M. Zerrak Feb 17 '20 at 21:57
0

After contrasting Mohammed M. Zerrak's answer, which I credit, with mine, I googled "theta + z is dense in R" for a middle-ground approach. Palka presents the assertion near the start of his chapter 2 (Topology), so it seems reasonable to offer a proof that requires no knowledge of Topology. I couldn't find a better alternative proof-strategy to pursue, but I did find a way to shorten the proof, making it easier to follow.

$\underline{\text{Proof}}$

For any real number $\;\theta,\;$ let $\;P(\theta)\;$ denote $\;\lfloor (\theta/2\pi) \rfloor \;$ (i.e. the floor function).
That is, $\;P(\theta)$ is the largest integer less than or equal to $\;(\theta/2\pi)\;$.
Let $\;Q(\theta)\;$ denote $\theta \;-\; [2\pi\times P(\theta)].$

The following $\;Q(\theta)\;$ manipulations seem justified.

$[E_1] \;Q(\theta_1) = Q(\theta_2) \;\Leftrightarrow\;$ $\theta_1 \equiv \theta_2 \;(\text{mod} \,2\pi).$

$[E_2] \;$ For $\;0 < \epsilon < \pi/2,$ $\;Q( \,|\theta_1 - \theta_2| \,) \;<\; \epsilon \;\Rightarrow\;$ $e^{i\theta_2} \,\in \,\Delta(e^{i\theta_1}, \epsilon).$

$[E_3] \;\alpha/(2\pi)\;$ irrational, $\;\Rightarrow\;$ $Q(\alpha)/(2\pi)\;$ also irrational, $\;\Rightarrow\;$ $Q(\alpha)/(2\pi) \;\times\;$ (any non-zero integer) also irrational.

Given a specific $\;\theta \,\in \,\mathbb{R},$ $\;\forall \;N \,\in \,\mathbb{Z^+} \;\ni \;NQ(\theta) < 2\pi$
$[E_4]\; N[Q(\theta)] \;=\; Q(N\theta)\;\;$ and $\;\;2\pi - N[Q(\theta)] \;=\; 2\pi - Q(N\theta).$

$[E_5]\; Q(\theta_1) > Q(\theta_2) \;\Rightarrow\;$ $Q(\theta_1 - \theta_2) \;=\; Q(\theta_1) - Q(\theta_2).$

This proof will avoid complications by restricting $\;\epsilon$ to $\;<\; \pi/2.$
This is justified since $\;\Delta(e^{i\theta}, \epsilon) \;\subseteq\; \Delta(e^{i\theta}, [\text{any larger} \;\epsilon]).$

For a specific $\;\theta\;$ and a specific $\;\epsilon \,\in (0, \pi/2)\;$
the approach will be to generate a strictly increasing infinite series
$\{ \,u_1, \,u_2, \,u_3, \,\cdots \,\}\;$ such that
for any such $\;u_k, \;e^{i(u_k\alpha)} \,\in \,\Delta(e^{i\theta}, \epsilon).$
This will be done by showing that $\;Q[ \,| \,(u_k)\alpha - \theta \,| \,] < \epsilon.$

$\underline{\text{algorithm}}$
Given a specific $\;\theta \,\in \mathbb{R},\;$ and a specific $\;\epsilon \,\in \,( \,0,[\pi/2] \,),$
let $\;M\;$ be any positive integer $\;>\; (2\pi)/\epsilon$ $\;\Rightarrow\; \epsilon \;>\; (2\pi)/M.$
Divide $\;[0,2\pi)$ into $\;M\;$ regions, each of width $\;(2\pi)/M \;<\; \epsilon.$
Let $\;S_1 \;\equiv\; \{ \,1, \,2, \,\cdots, \,(M+1) \,\}.$
Consider the values $\;Q(1\alpha), \,Q(2\alpha), \,\cdots Q([M+1]\alpha).$
Two of these values must fall into the same region.
Therefore, there must be two positive integers $\;j,k \,\in \,S_1\;: j < k\;$
such that $\;0 \leq\; \left| \,Q(k\alpha) \;-\; Q(j\alpha) \,\right| \;<\; \epsilon \;<\; (\pi/2) \;\Rightarrow$
$0 \;\leq\; Q[ \,| \,(k-j)\alpha \,| \,] \;<\; \epsilon \;<\; \pi/2.$
By $\;E_3, \;Q[ \,| \,(k-j)\alpha \,| \,] \;\neq\;$ zero.

Let $\;\delta \;=\; Q[ \,| \,(k-j)\alpha \,| \,] \;\Rightarrow\; $ $\;0 \;<\; \delta \;<\; \epsilon \;<\; \pi/2.$
Then, either $\;Q[ \,(k-j)\alpha \,] \;=\; \delta\;$ or $\;Q[ \,(k-j)\alpha \,] \;=\; (2\pi - \delta).$

$\underline{\text{Case 1:}\;Q[(k-j)\alpha] \;=\; \delta}.$
If $\;Q(\theta) \;<\; \delta\;$ then set $\;u_1 \;=\;(k-j) \;\Rightarrow\;$
$[Q(u_1\alpha) \;-\; Q(\theta)] \;\leq\; \delta \;<\; \epsilon \;\Rightarrow\;$
[by $\;E_5$] $\;Q[(u_1\alpha) - \theta] \;\leq\; \delta \;<\; \epsilon.$

If $\;Q(\theta) \;\geq\; \delta\;$ then set $\;N\;$ equal to the largest
positive integer such that $\;N\delta \leq Q(\theta)\;$
and set $\;u_1 \;=\; N(k-j).$
This will imply that $\;N\delta \;\leq\; Q(\theta) \;<\;(N+1)\delta.$
By $\;E_4, \;Q(u_1\alpha) = N\delta\;$ and by $\;E_5$ $\; Q(\theta - u_1\alpha) \;=\; Q(\theta) - Q(u_1\alpha).$
Therefore, $\;Q(\theta - u_1\alpha) \;<\; \delta \;<\; \epsilon.$

$\underline{\text{Case 2:}\;Q[(k-j)\alpha] \;=\; (2\pi - \delta)}.$
If $\;Q(\theta) \;>\; (2\pi - \delta)\;$ then set $\;u_1 \;=\;(k-j).$
Similar to the analysis in case 1, this will imply that
$\;Q[\theta - (u_1\alpha)] \;<\; \delta \;<\; \epsilon.$

If $\;Q(\theta) \;\leq\; (2\pi - \delta)\;$ then, set $\;N\;$ equal to the largest
positive integer such that $\;Q(\theta) \leq (2\pi - N\delta)\;$ and set $\;u_1\;$ to $\;N(k-j).$
Similar to the analysis in case 1, this will imply that
$\;Q[(u_1\alpha) - \theta] \;<\; \delta \;<\; \epsilon.$

To compute $\;u_2,\;$ follow the exact same procedure used to compute $\;u_1\;$ except
let $\;S_2 \;\equiv\;$ $\{ \,(u_1 + 1), \,(2u_1 + 2), \,(3u_1 + 3),$ $\,\cdots, \,(M+1)u_1 + (M+1) \,\}.$
This will guarantee that when the $\;k\;$ and $\;j\;$ are found
that correspond to $\;S_2, \;(k - j) > u_1.$
This will guarantee that the computed $\;u_2\;$ will be greater than $\;u_1.\;$

This process may be repeated indefinitely, where $\;S_{(k+1)}\;$ is set to
$\{ \,(u_k + 1), \,(2u_k + 2), (3u_k + 3), \,\cdots, \,(M+1)u_k + (M+1) \,\}.$

Setting $\;S_{(k+1)}\;$ as above will guarantee that the
infinite sequence $\;\{ \,u_1, \,u_2, \,u_3, \,\cdots \,\},\;$ will be strictly increasing.
The procedure itself will guarantee that for each
element $\;u_k\;$ in the sequence,
$\;Q[ \,| \,(u_k)\alpha - \theta \,| \,] < \epsilon.$

Since this procedure may be followed for any
$\epsilon \,\in \,(0, \pi/2), \;e^{i\theta}\;$ is an accumulation point.
Since this procedure holds for any $\theta,$
every element in $\;K(0,1)\;$ is an accumulation point.

user2661923
  • 35,619
  • 3
  • 17
  • 39