Originally this integral was interesting for me as it represents the specific harmonic number $H_{-\frac{1}{5}}$ and also because Mathematica returned the wrong value $0$ for the integral. I posted the probem here https://mathematica.stackexchange.com/questions/215089/possible-bug-integrate1-x-1-5-1-x-x-0-1-0
Later I found a way to get a reasonable result from Mathematica which, finally I could simplify to this form.
$$\int_0^1 \frac{1-\frac{1}{\sqrt[5]{x}}}{1-x} \, dx=\frac{\pi}{2} \sqrt{1+\frac{2 \sqrt{5}}{5}}-\frac{5}{4} \log (5)-\frac{\sqrt{5}}{2} \log \left(\frac{1}{2} \left(\sqrt{5}+1\right)\right)$$
So a presumed bug by has turned finally into a nice statement. Can you prove it?