I asked this question yesterday. I thought I had the forward direction figured out but now I've lost confidence.
Let $x_1,x_2,\ldots$ be a sequence of points of the product space $\prod X_\alpha$. Show that this sequence converges to a point $x$ if and only if the sequence $\pi_\alpha(x_1),\pi_\alpha(x_2),\ldots$ converges to $\pi_\alpha(x)$ for each $\alpha$.
My attempt at a proof.
Suppose $x_n \to x$. Let $A$ be an index set and let $\alpha_0 \in A$. Let $U_{\alpha_0}$ be a neighborhood such that $\pi_{\alpha_0(x)}\in U_{\alpha_0}$. Then $\pi_{\alpha_0}: \Pi_{\alpha \in A}X_\alpha \to X_{\alpha_0}$. Then $\pi_{\alpha_0}^{-1}(U_{\alpha_0})=U_{\alpha_0}\times\Pi_{\alpha \in A \setminus {\alpha_0}}X_\alpha$.
Let $N \in \mathbb{N}$. Then for $n > N$ we have that $x_n=x_{n,\alpha_0} \in U_{\alpha_0}\times\Pi_{\alpha \in A \setminus \alpha_0}X_\alpha=\pi_{\alpha_0}^{-1}(U_{\alpha_0})$.
Thus $\pi_{\alpha_0}(x_n)\in U_{\alpha_0}$ for $n > N$.