$\color{brown}{\textbf{Preliminary note.}}$
Equation
$$(r^2-r)f''(r) + f'(r) -l(l+1)f(r)= 0\tag1$$
has exact solution
$$f(r) = c_1 r^2\operatorname{_2F_1}(1-l, 2+l; 3; r) + c_2 \operatorname {G_{2,\,2}^{2,\,0}} \left(r\big|_{0,\,2}^{1-l,\,2+l}\right),$$
where $\operatorname{_2F_1}(a,b;c;z)$ is the Gauss hypergeometric function and
$G$ is the Meijer G-function,
To solve equation $(1)$ can be used Frobenius Metod.
$\color{brown}{\textbf{Substitution.}}$
The author of the paper uses Frobenius method after the substitution
$$f(r) = \left(\dfrac{r^2}{r-1}\,e^{r-1}\right)^{-\rho} g(r),\tag2$$
which reduces the polynomials degree.
The given linear homogenius ODE is
$$(r^2-r)f''_{rr} + f'_r-\left(\dfrac{\rho^2r^3}{r-1}+l^2+l-\dfrac3r\right)f(r) = 0.\tag3$$

Substiution $(2)$ leads to the equation
$$\dfrac{r-1}r (r^2g''_{rr}) + \left(\dfrac{4\rho+1}{r^2}-2\rho\right) (r^2 g'_r)
- \left(4\rho^2+l^2+l + \dfrac{4\rho^2+4\rho-3}r\right)g =0.\tag4$$

$\color{brown}{\textbf{Frobenius method.}}$
Let
$$t=\dfrac{r-1}r,\quad \dfrac1r = 1-t,\quad g(r)=\sum\limits_{n=0}^\infty a_n t^n,\tag5$$
then
\begin{align}
&\dfrac{4\rho+1}{r^2}-2\rho = (4\rho+1)(1-t)^2-2\rho = 2\rho+1 - (8\rho+2)t
+ (4\rho+1)t^2,\\[4pt]
&4\rho^2+l^2+l + \dfrac{4\rho^2+4\rho-3}r
=l^2+l+8\rho^2+4\rho-3 -(4\rho^2+4\rho-3)t,\\[4pt]
&t'_r = \dfrac1{r^2} = (1-t)^2,\\[4pt]
&r^2g'_r = \dfrac{g'_r}{t'_r} = g'_t = \sum\limits_{n=1}^\infty n a_n t^{n-1},\\[4pt]
&g'_r = (1-t)^2g'_t = \sum\limits_{n=1}^\infty n a_n\,t^{n-1}
-2\sum\limits_{n=1}^\infty n a_n\,t^n
+\sum\limits_{n=1}^\infty na_n\,t^{n+1},\\[4pt]
&r^2g''_{rr} = (g'_r)'_t = \sum\limits_{n=1}^\infty n(n-1)a_n\,t^{n-2}
-2\sum\limits_{n=1}^\infty n^2a_n\,t^{n-1}
+\sum\limits_{n=1}^\infty(n+1)n a_n\,t^n,
\end{align}
and from $(4)$ should
\begin{align}
&\sum\limits_{n=1}^\infty n(n-1)a_n\,t^{n-1}
-2\sum\limits_{n=1}^\infty n^2a_n\,t^{n}
+\sum\limits_{n=1}^\infty(n+1)n a_n\,t^{n+1}\\
&+(2\rho+1) \sum\limits_{n=1}^\infty n a_n t^{n-1}
-(8\rho+2)\sum\limits_{n=1}^\infty n a_n t^{n}
+ (4\rho+1)\sum\limits_{n=1}^\infty n a_n t^{n+1}\\
& - (l^2+l+8\rho^2+4\rho-3)\sum\limits_{n=0}^\infty a_n t^n
+(4\rho^2+4\rho-3)\sum\limits_{n=0}^\infty a_n t^{n+1} =0,\\[4pt]
&\sum\limits_{n=1}^\infty(n+1)na_{n+1}\,t^n
-2\sum\limits_{n=1}^\infty n^2a_n\,t^n
+\sum\limits_{n=1}^\infty n(n-1)a_{n-1}\,t^{n}\\
&+(2\rho+1)a_1+(2\rho+1)\sum\limits_{n=1}^\infty(n+1)a_{n+1}t^{n}\\
&-(8\rho+2)\sum\limits_{n=1}^\infty na_{n}t^{n}
+ (4\rho+1)\sum\limits_{n=1}^\infty (n-1) a_{n-1} t^{n}\\
&- (l^2+l+8\rho^2+4\rho-3)a_0 - (l^2+l+8\rho^2-4\rho-3)\sum\limits_{n=1}^\infty a_{n} t^{n}\\
& +(4\rho^2+4\rho-3)\sum\limits_{n=1}^\infty a_{n-1} t^{n} = 0,\\[4pt]
&(2\rho+1)a_1- (l^2+l+8\rho^2+4\rho-3)a_0\\[4pt]
&+\sum\limits_{n=1}^\infty \big((n+1)n+(2\rho+1)(n+1)\big)a_{n+1}\,t^n\\[4pt]
&+\sum\limits_{n=1}^\infty \big(-2n^2-(8\rho+2)n-(l^2+l+8\rho^2+4\rho-3)\big)a_n\,t^n\\[4pt]
&+\sum\limits_{n=1}^\infty \big(n(n-1)+ (4\rho+1)(n-1)+(4\rho^2+4\rho-3)\big)a_{n-1}\,t^{n}=0,\\[4pt]
\end{align}
\begin{cases}
(2\rho+1)a_1- (l^2+l+8\rho^2+4\rho-3)a_0 = 0,\\[4pt]
\big(n^2 + (2\rho+2)n+2\rho+1\big)a_{n+1}\\[4pt]
-\big(\color{red}{\mathbf{2}}n^2 +(8\rho+2) n+(l^2+l+8\rho^2+4\rho-3)\big)a_n\\[4pt]
+\big(n^2+4\rho n + 4\rho^2-4\big)a_{n-1}=0,\\[4pt]
\end{cases}
with the single difference in the coefficients from the pointed.