Let $I = \{a+bi \in \mathbb{Z}[i] \; / \; [a]_2 = [b]_2\}$ be an ideal of $\mathbb{Z}[i]$ where $[a]_2 = \{a+2n \;/\; n \in \mathbb{Z}\}$
(a) Prove that I is generated by $1 + i$
I solved it this way:
|$\subseteq$ $$[1]_2=[1]_2\Rightarrow 1+i \in I$$
|$\supseteq$ $$ z \in I \Rightarrow z = x+yi \; / \; [x]_2=[y]_2 \Rightarrow y-x=2n\;/\;x,y,n \in \mathbb{Z}\Rightarrow y=x+2n\; \land \; x=y-2n \;/\;x,y,n \in \mathbb{Z} \Rightarrow z \in (1+i) $$
But I’m not sure if it is correct.
(b) How many elements does $\mathbb{Z}[i]/(1+i) $have?
I think $\mathbb{Z}[i]/(1+i)=\{[1+i]\}$ but I don’t know how to prove it.
I really appreciate your help.