0

$$1+1\cdot3+1\cdot3\cdot5+1\cdot3\cdot5\cdot7$$

How to find an expression for the general term of a series ?

amWhy
  • 209,954

2 Answers2

2

The equation for the product of consecutive odd numbers from $1$ to $2n-1$ can be given as $$a_n=\frac{(2n)!}{2^n n!}$$

Therefore the total sum can be written as $$\sum_{i=1}^na_i = \sum_{i=1}^n\frac{(2i)!}{2^i i!}$$

2'5 9'2
  • 54,717
lioness99a
  • 4,943
0

You can try this also:

Start with a product series ending with an odd number:- $$1\cdot 2 \cdot 3 \cdot … \cdot 2r-1$$

Now that we only want the odd numbers, divide all of the even ones by 2. There are 'r' odd numbers and 'r-1' even numbers.

$$\frac{1\cdot 2 \cdot 3 \cdot … \cdot 2r-1}{2^{r-1}}$$

Now we are left with:

$$1\cdot 1 \cdot 3 \cdot 2 \cdot… \cdot 2r-1$$

Factoring:

$$(1\cdot 2 \cdot 3 \cdot … \cdot r-1)\cdot 1 \cdot 3 \cdot 5\cdot … \cdot 2r-1$$

Divide by $r-1!$ and we are left with:

$$1 \cdot 3 \cdot 5\cdot … \cdot 2r-1$$

Thus our general term is: $$t_r=\frac{(2r-1)!}{2^{r-1}(r-1)!}$$

Boy
  • 427