I was wondering if there exists a topology $\tau$ in $L^1(\Omega,\mathcal{L}^d), \Omega\subset \mathbb{R}^d$ open bounded, such that a sequence $v_n\xrightarrow{b} v$ if and only if $v_n \xrightarrow{\tau} v$.
For $v_n \xrightarrow{b} v$ I mean $v_n$ converges in the sense of biting to $v$, i.e. there are $E_i\subset \Omega$ countably many measurable sets, $\mathcal{L}^n(\Omega\setminus E_i)\downarrow 0$ and $v_n$ converges weakly to $v$ in $L^1(E_i,\mathcal{L}^d)$ for every $i\in \mathbb{N}$.