Prove that for each $n\in\mathbb{N}$
$$\frac{1}{2\pi}\int_0^{2\pi}(2\cos\theta)^{2n}d\theta=\frac{(2n)!}{n!n!}$$
My attempt:
I know by the cauchy form:
$f^{(n)}(z_0)=\frac{1}{2\pi i}\displaystyle\int_0^{2\pi}\frac{f(z)}{(z-z_0)^{n+1}}dz$
Here I'm stuck. Can someone help me?