First, note that
$$
\lim_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=e^{\lim_{x\rightarrow 0}\frac{1}{x}\ln(1+x)}.
$$
After one application of l'Hopital's rule, the exponent becomes $\lim_{x\rightarrow 0}\frac{1}{1+x}$, which equals $1$. This computation can be used to verify that your original limit is, indeed, of the indeterminate form "$\frac{0}{0}$".
Therefore, we use l'Hopital's rule on the original limit to get that the original limit is
$$
\lim_{x\rightarrow 0}-\frac{d}{dx}(1+x)^{\frac{1}{x}}.
$$
Observe now that $(1+x)^{\frac{1}{x}}=e^{\left(\frac{1}{x}\ln(1+x)\right)}$. Therefore, the derivative is
\begin{align*}
\frac{d}{dx}(1+x)^{\frac{1}{x}}&=\frac{d}{dx}e^{\left(\frac{1}{x}\ln(1+x)\right)}\\
&=e^{\left(\frac{1}{x}\ln(1+x)\right)}\frac{d}{dx}\left(\frac{1}{x}\ln(1+x)\right)\\
&=e^{\left(\frac{1}{x}\ln(1+x)\right)}\left(-\frac{1}{x^2}\ln(1+x)+\frac{1}{x(x+1)}\right)
\end{align*}
Therefore, we are interested in calculating
$$
\lim_{x\rightarrow 0}e^{\left(\frac{1}{x}\ln(1+x)\right)}\left(\frac{1}{x^2}\ln(1+x)-\frac{1}{x(x+1)}\right)
$$
By the calculation above, the exponential part in this limit will approach $e$, so we are left with evaluating the second part, i.e.,
$$
\lim_{x\rightarrow 0}\left(\frac{1}{x^2}\ln(1+x)-\frac{1}{x(x+1)}\right)=\lim_{x\rightarrow 0}\frac{(1+x)\ln(1+x)-x}{x^2(1+x)}.
$$
A substitution of $x=0$ shows that this is also of the indeterminate form "$\frac{0}{0}$", so we apply l'Hopital's rule to get
$$
\lim_{x\rightarrow 0}\frac{\ln(1+x)}{x(3x+2)}.
$$
Applying l'Hopital's rule one more time to this indeterminate form "$\frac{0}{0}$" gives
$$
\lim_{x\rightarrow 0}\frac{1}{(1+x)(6x+2)}=\frac{1}{2}.
$$
Now, multiply and complete the calculation.
To learn how to "handle limits like a pro", there is no substitute for just lots of practice. After doing enough, you'll know some tricks and test them out one at a time to see if any of them look promising (again, promising comes from experience).