Suppose you have pdf $$f(x) = \begin{cases} \frac{8}{x^3} &, \text{ if $x\ge 2$} \\ 0 &, \text{ otherwise} \end{cases}$$
I have found that $\Bbb{E}(X)=4$ and am trying to find $\operatorname{Var}(X)$ using $\Bbb{E}(X^2)-(\Bbb{E}(X))^2$.
To find $\Bbb{E}(X^2)$, I've been using $$\int_{-\infty}^\infty u^2 f(u) du = \int_2^\infty \frac{8}{u} du = \lim_{t\to \infty}(8\ln t - 8\ln2)$$
However, $\lim_{t\to \infty}(\ln t)$ DNE, so does that mean that neither does $\operatorname{Var}(X)$?