Could anyone help me finding the following limit: $$\lim_{n\to\infty}(n!)^{1/n^2}$$
Thank you!
Could anyone help me finding the following limit: $$\lim_{n\to\infty}(n!)^{1/n^2}$$
Thank you!
use $1<n!<n^n$.and $\displaystyle \lim_{n\to\infty}n^{\frac{1}{n}}=1$
By Stirling formula we have $$n!\sim_\infty \left(\frac{n}{e}\right)^n\sqrt{2\pi n}$$ so $$(n!)^{1/n^2}\sim_\infty \left(\frac{n}{e}\right)^{1/n}(2\pi n)^{1/2n^2}\to_\infty1$$
Try this ($L$ is the original limit) by first logging the function: $$ \lim_{n \to \infty} \frac{\log n!}{n^2}= \lim_{n \to \infty}\frac{\sum_{k=1}^{n} \log k}{n^2} \leq \lim_{n \to \infty} \frac{n \log n}{n^2}=0 $$ Hence the limit of the upper bound is $e^0=1$. Now take the lower bound: $$ \lim_{n \to \infty}\frac{\sum_{k=1}^{n} \log k}{n^2} \geq \lim_{n \to \infty}\frac{n \log 1}{n^2}=0 $$ Hence the limit of the lower bound is $e^0=1$. By the squeeze lemma $L=1$