This question originates from Pinter's Abstract Algebra, Chapter 27, Exercise E6(c).
If $a$ is a root of $x^2-2$ and $b$ is a root of $\displaystyle x^2-\frac{1}{2}$, then $\Bbb{Q}(a) \cong \Bbb{Q}(b)$.
$a^2-2=0\implies a=\pm\sqrt{2}$, whereas $\displaystyle b^2-\frac{1}{2}=0\implies b=\pm\sqrt{\frac{1}{2}}$.
Note $\pm2b = a$. In general, $F(a) = F(ca)$ for $c\in F$. (Assume $c \ne 0.)$
Hence $\Bbb{Q}(b)=\Bbb{Q}(\pm2b)=\Bbb{Q}(a)$.
Correct?