$$x^{x^x}=\exp(x^x\ln(x))=\exp(\ln(x)e^{x\ln(x)})$$
$$\exp(\ln(x)e^{x\ln(x)})= \sum^{\infty}_{n=0} \frac{\big(\ln(x)e^{x\ln(x)}\big)^n}{n!}$$
$$\int_0^1 x^{x^x}dx=\int_0^1\sum^{\infty}_{n=0} \frac{\big(\ln(x)e^{x\ln(x)}\big)^n}{n!}dx$$
Now using Fubini's theorem we swap the integral and sum
$$=\sum^{\infty}_{n=0} \frac{1}{n!} \int_0^1\big(\ln(x)e^{x\ln(x)}\big)^ndx$$
Now we evaluate the integral
$$\int_0^1\big(\ln(x)e^{x\ln(x)}\big)^ndx=\int_0^1 \ln^n(x)e^{nx\ln(x)}dx=\int_0^1 \sum^\infty_{n=0} \frac{\ln^n(x)(nx\ln(x))^n}{n!}dx$$
$$= \sum^\infty_{n=0} \int_0^1 \frac{\ln^n(x)(nx\ln(x))^n}{n!}dx=\sum^\infty_{n=0}\frac{n^n}{n!} \int_0^1 x^n \ln^{2n}(x)dx$$
Evaluating the integral using Bernoulli's proof
$$\int_0^1 x^n \ln^{2n}(x)dx= \Bigg[\frac{x^{n+1}}{n+1}\sum_{i=0}^{2n} (-1)^i \frac{(2n)_i}{(n+1)_i} (\ln(x))^{2n-1}\Bigg]_0^1$$
Therefore
$$\int_0^1 x^{x^x}dx=\sum^{\infty}_{n=0} \frac{1}{n!} \int_0^1\big(\ln(x)e^{x\ln(x)}\big)^ndx=
\sum^{\infty}_{n=0} \frac{1}{n!}\sum^\infty_{n=0}\frac{n^n}{n!} \int_0^1 x^n \ln^{2n}(x)dx$$
$$=\sum^{\infty}_{n=0} \frac{1}{n!}\sum^\infty_{n=0}\frac{n^n}{n!} \Bigg[\frac{x^{n+1}}{n+1}\sum_{i=0}^{2n} (-1)^i \frac{(2n)_i}{(n+1)_i} (\ln(x))^{2n-1}\Bigg]_0^1
$$
I don't know how to do the closed form for this integral but I hope this helps