This is an exercise from Velleman's "How To Prove It". I saw a similar question asked on here, but I am still confused. Also, those questions were closed for being off-topic for some reason.
Suppose $B$ is a set, $\{A_i | i \in I\}$ is an indexed family of sets, and $I \neq \emptyset $.
- b. Prove that $B \setminus (\bigcup_{i \in I} A_i) = \bigcap_{i \in I} B \setminus A_i$.
Here is my attempt at some of the proof. I have indicated the part where I get stuck:
Proof: Let $x$ be arbitrary. Suppose $x \in B \setminus (\bigcup_{i \in I} A_i)$. Then $x \in B$, and for all $i \in I$, $x \notin A_i$. Let $j \in I$ be arbitrary. It follows that $x \notin A_j$. Thus, $x \in B \setminus A_j$. Since $j$ was arbitrary, $x \in \bigcap_{j \in I} B \setminus A_j$.
Now suppose $x \in \bigcap_{i \in I} B \setminus A_i$. So $\forall i \in I (x \in B)$ and $\forall i \in I(x \notin A_i)$. Suppose $x \in \bigcup_{i \in I} A_i $. Then we can choose a $j \in I$ such that $x \in A_j$. But since $j \in I$, it follows that $x \notin A_j$, which is a contradiction. Thus, $x \notin \bigcup_{i \in I} A_i$. [How do we show that $x \in B$ to complete the proof?] $\square$
Proving the statement with a string of equivalences kind of makes sense: \begin{align} x \in B \setminus (\bigcup_{i \in I} A_i) &\leftrightarrow x \in B \wedge x \notin \bigcup_{i \in I} A_i \\ & \leftrightarrow x \in B \wedge \neg (\exists i \in I (x \in A_i)) \\ & \leftrightarrow x \in B \wedge \forall i \in I(x \notin A_i) \\ & \leftrightarrow \forall i \in I(x \notin A_i \wedge x \in B ) & \text{since $x\in B$, of course $x \in B$ for all $i \in I$. But why the converse?}\\ & \leftrightarrow \forall i \in I(x \in B \setminus A_i)\\ & x\in \bigcap_{i \in I}B \setminus A_i \\ \end{align}
I do not understand how we can go from $\forall i \in I(x \in B)$ to $x \in B$, since if $x \in B$ is true, then that means $x \in B$ even for some $j \notin I$. I think I am misunderstanding some fundamental rules. Thanks in advance!