Question: Suppose you are given a sequence $\displaystyle (a_n)_{n=1}^{\infty}$ such that $a_n\gt 0$ $\forall n\in\Bbb{N}$. Suppose we also know that $\displaystyle \lim_{n\to\infty}a_n=0$. Now if we are given that $\displaystyle \sum_{n=1}^{\infty}a_n$ converges then what can we say about the convergence of $$\sum_{n=1}^{\infty}\frac{e^{na_n}}{n^2}?$$ What if $\displaystyle \sum_{n=1}^{\infty} a_n$ diverges?
I tried to check the convergence using ratio test but it wasn't much helpful. Moreover the root test was also inconclusive. Can anybody drop some hints please?