$$\lim_{n\to\infty}\int_\frac{1}{n}^n\frac{\arctan x} {(x^2+x+1)}$$
Could you help me find this limit? Any ideas are helpful.
$$\lim_{n\to\infty}\int_\frac{1}{n}^n\frac{\arctan x} {(x^2+x+1)}$$
Could you help me find this limit? Any ideas are helpful.
Set $x=\dfrac1y$
$$I=\int_{1/n}^n\dfrac{\arctan x}{x^2+x+1}dx=\int_n^{1/n}\dfrac{\arctan\dfrac1y}{\dfrac1{y^2}+\dfrac1y+1}\left(-\dfrac{dy}{y^2}\right)=\int_{1/n}^n\dfrac{\arctan\dfrac1y}{1+y+y^2}dy$$
$$I+I=\int_{1/n}^n\dfrac{\arctan x+\arctan\dfrac1x}{x^2+x+1}dx$$
Using Are $\mathrm{arccot}(x)$ and $\arctan(1/x)$ the same function?,
for $x>0,$ $$2I=\int_{1/n}^n\dfrac{\dfrac\pi2}{x^2+x+1}dx$$