Euclidean norm and $\sup$-norm are defined on p. 4: $\lVert x \rVert = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^nx_i^2}$ and $\lvert x \rvert = \max(\lvert x_1 \rvert,\ldots,\lvert x_n \rvert)$. This induces the Euclidean metric $d(x,y) = \lVert x -y \rVert$ and the $\sup$-metric $d(x,y) = \lvert x -y \rvert$. Also on p.4 Munkres states that $\lvert x \rvert \le \lVert x \rVert \le \sqrt{n}\lvert x \rvert$. The proof is straightforward and implies that the metrics are equivalent:
$$\lvert x \rvert^2 = \max(\lvert x_1 \rvert^2,\ldots,\lvert x_n \rvert^2) = \max(x_1^2,\ldots,x_n^2) \le \sum_{i=1}^nx_i^2 \le n \max(x_1^2,\ldots,x_n^2) = n \lvert x \rvert^2 .$$