Let $F$ a field. I want proves that $[GL_2(F),GL_2(F)]=SL_2(F)$. The inclusion $[GL_2(F),GL_2(F)]\subset SL_2(F)$ holds, by (Special linear group contains commutator subgroup of general linear group.)
$SL_2(F)\subset [GL_2(F),GL_2(F)]=SL_2(F)$? I need for any $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ exists $B,C\in GL_2(F)$ such that $A=BCB^{-1}C^{-1}$ but I can't find $B,C$.
Actualization 1.
Let $0,1\in F$.
LEt $\begin{bmatrix} a & b\\ c & d \end{bmatrix}\in SL_2(F)$ then $ad-bc=1$.
for all $x\in F$, we have $$\begin{bmatrix} 1 & x\\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 1+1 & 0\\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & x\\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1+1 & 0\\ 0 & 1 \end{bmatrix}^{-1}\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}^{-1}$$ where $$\begin{bmatrix} 1+1 & 0\\ 0 & 1 \end{bmatrix}^{-1}=\begin{bmatrix} (1+1)^{-1} & 0 \\ 0 & 1 \end{bmatrix}\text{ y }\begin{bmatrix} 1 & x\\ 0 & 1 \end{bmatrix}^{-1}=\begin{bmatrix} 1 & -x\\ 0 & 1 \end{bmatrix}$$ where $(1+1)^{-1}$ inverse multiplicative of $1+1$ y $-x$ aditive inverse of $x$.
therefore, $\begin{bmatrix} 1 & x\\ 0 & 1 \end{bmatrix}$ is a product of commutators. Analogously, $\begin{bmatrix} 1 & 0\\ x & 1 \end{bmatrix}$ is product of commutators.
Simillary $$\begin{bmatrix} x & 0\\ 0 & x^{-1} \end{bmatrix}=\begin{bmatrix} x & 0\\ 0 &1 \end{bmatrix}\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}\begin{bmatrix} x & 0\\ 0 & 1 \end{bmatrix}^{-1}\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}^{-1}.$$
If $a\neq 0$, we have $$\begin{bmatrix} a & b\\ c & d \end{bmatrix}=\begin{bmatrix} 1 & 0\\ ca^{-1} & 1 \end{bmatrix}\begin{bmatrix} 1 & ab\\ 0 & 1 \end{bmatrix}\begin{bmatrix} a & 0\\ 0 & a^{-1} \end{bmatrix}$$ where each matrix is a product of commutators.
If $a=0$ then $b\neq 0$, so $$\begin{bmatrix} 0 & b\\ c & d \end{bmatrix}=\begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}\begin{bmatrix} 1 & -db^{-1}\\ 0 & 1 \end{bmatrix}\begin{bmatrix} b^{-1} & 0\\ 0 & b \end{bmatrix}$$ where each matrix is a product of commutators.
And $\begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}$ is a product of commutator, indeed
$$\begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}=\begin{bmatrix} 1 & 1+1\\ 0 & 1 \end{bmatrix}\begin{bmatrix} -1 & 0\\ 1 & 1+1 \end{bmatrix}\begin{bmatrix} 1 & 1+1\\ 0 & 1 \end{bmatrix}^{-1}\begin{bmatrix} -1 & 0\\ 1 & 1+1 \end{bmatrix}^{-1}$$ therefore $SL_2(F)\subset [GL_2(F),GL_2(F)]$.
This is correct? This idea is by José Carlos Santos Commutator Group of $GL_2(R)$ is $SL_2(R)$