For real numbers $0 < a < b$ we let \begin{align*} F(a,b) = 2\int_a^b \frac{dt}{\sqrt{(t^2-a^2)(b^2-t^2)}} \end{align*}
Using some substitutions, we can show that \begin{align*} F(a,b) = \int_{a^2}^{b^2} \frac{dt}{\sqrt{t(t-a^2)(b^2-t)}} = \int_{-\infty}^0 \frac{dt}{\sqrt{t(t-a^2)(b^2-t)}}. \end{align*} (For the first one take $u = t^2$, we get the second from the first by substituting $u = \frac{t-b^2}{t-a^2}$)
I would like to show that \begin{align*} F(a,b) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{a^2\cos^2(\theta) + b^2\sin^2(\theta)}}, \end{align*} but was unable to do so. From \begin{align*} F(a,b) = \int_{-\infty}^0 \frac{dt}{\sqrt{t(t-a^2)(b^2-t)}}, \end{align*} I substituted $\theta = -\arctan(t)$. Then $d\theta = -(t^2 + 1)^{-1}dt$ and the bounds become $\pi/2$ and $0$. \begin{align*} F(a,b) &= \int_{\pi/2}^0 \frac{-(t^2 + 1)d\theta}{\sqrt{\tan(-\theta)(\tan(-\theta)-a^2)(b^2-\tan(-\theta))}}\\ &= \int_0^{\pi/2} \frac{\sec^2(-\theta)d\theta}{\sqrt{\tan(-\theta)(\tan(-\theta)-a^2)(b^2-\tan(-\theta))}}\\ &= \int_0^{\pi/2} \frac{d\theta}{\sqrt{\cos^4(-\theta)\tan(-\theta)(\tan(-\theta)-a^2)(b^2-\tan(-\theta))}} \end{align*} I am stuck here as I could not figure out how to show that this becomes \begin{align*} \int_0^{\pi/2} \frac{d\theta}{\sqrt{a^2\cos^2(\theta) + b^2\sin^2(\theta)}}. \end{align*}
I am fairly certain it should be possible given this and this.