Start out as by noticing that
$$
\omega = cis(\frac{2\pi}{9}),\quad \omega^{8}=cis(\frac{-2\pi}{9})\quad \\
\omega^2 = cis(\frac{4\pi}{9}),\quad\omega^7=cis(\frac{-4\pi}{9})
\\ etc.
$$
Now see,
$$ \omega\ + \omega^8 = 2\ cos(\frac{2\pi}{9}) \\
\omega^2\ + \omega^7= 2\ cos(\frac{4\pi}{9})\\
\omega^3 + \omega^6 = 2\ cos(\frac{6\pi}{9})\\
\omega^4\ + \omega^5= 2\ cos(\frac{8\pi}{9})\\
$$
If we multiply these we get:
$$
[2\ cos(\frac{2\pi}{9})][2\ cos(\frac{4\pi}{9})][2\ cos(\frac{6\pi}{9})][2\ cos(\frac{8\pi}{9})] = (\omega\ + \omega^8)(\omega^2\ + \omega^7)(\omega^3 + \omega^6)(\omega^4\ + \omega^5)
$$
If we carefully pull out the $\omega$s, we can get the R.H.S to equal $ \ \omega^{10}(1\ + \omega)(1\ + \omega^3)(1\ + \omega^5)(1\ + \omega^7)$
We also know that $ \ \omega^{10} = \omega$, so we can simplify it to be $\ \omega(1\ + \omega)(1\ + \omega^3)(1\ + \omega^5)(1\ + \omega^7) $
Using the fact: $\ \omega\ + \omega^2\ + \omega^3\ + \omega^4\ + \omega^5\ + \omega^6\ + \omega^7\ + \omega^8\ = -1 $, the expression simplifies to -1.
Now simplifying the L.H.S. we get: $16[cos(\frac{2\pi}{9})\cos(\frac{4\pi}{9})\cos(\frac{6\pi}{9})\cos(\frac{8\pi}{9})]$. Knowing that $cos(\frac{2\pi}{3}) = -\frac{1}{2}$, we can finally get that:
$$
-8\ [cos(\frac{2\pi}{9})\cos(\frac{4\pi}{9})\cos(\frac{8\pi}{9})] = -1 \\
[cos(\frac{2\pi}{9})\cos(\frac{4\pi}{9})\cos(\frac{8\pi}{9})] = \frac{1}{8} \\
[cos(\frac{\pi}{9})\cos(\frac{2\pi}{9})\cos(\frac{4\pi}{9})] = \frac{1}{8}
$$