I want to prove it's a basis respect the inner product $\langle f,g\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)}dx$.
I have to calculate and prove :
$\langle\frac{1}{\sqrt 2},\frac{1}{\sqrt 2}\rangle=\langle\cos(kx),\cos(kx)\rangle=\langle\sin(kx),\sin(kx)\rangle=1$
$\langle\frac{1}{\sqrt 2},\cos(kx)\rangle=\langle\frac{1}{\sqrt 2},\sin(kx)\rangle=0$
$\langle f,g\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)}dx$ so can I use Euler's formula?