Hint $ $ It reduces to solving $\,x^{\large 5}\equiv -2\pmod{\!23}\,$ by easy congruence arithmetic. Now apply
Key Idea $ $ To take $k$'th roots when $k$ is coprime to period $n,\,$ raise to power $\,1/k\pmod{\!n},\,$ i.e.
$$\ \ \ \ \ \ \,\bbox[8px,border:2px solid #c00]{
\text{if $\:\!\ x^{\large n} =\, 1\, =\, a^{\large n} \ $ then }\ x^{\large k} = a \iff x = a^{\large (1/k)_n}}$$
so $\bmod 23\!:\ x,a\not\equiv 0\,\Rightarrow\, x^{\large 22} \equiv 1\equiv a^{\large 22} $ hence $\, x^{\large 5}\equiv a\iff x\equiv a^{\large (1/5)_{22}}\equiv a^{\large 9}\ $ by
$$\bmod 22\!:\,\ \dfrac{1}5\equiv \dfrac{3(\color{#c00}{-7})}5\equiv \dfrac{3}1\,\dfrac{\color{#c00}{15}}5\equiv 9\qquad$$
Alternatively by inverse reciprocity $$\bmod 22\!:\,\ \dfrac{1}5\equiv \dfrac{1+22\color{#c00}{(2)}}{5}\equiv 9\qquad\qquad$$
by $\bmod 5\!:\ 0\equiv 1\!+\!22\color{#c00}k\equiv 1\!+\!2k\iff 2k\equiv 4\iff \color{#c00}{k\equiv 2}$