I have a doubt: Given $\frac{\mathbb{Z}_m [x]}{<f(x)>}$, where $m$ is composite and $f(x)=\prod_{i=1}^t f_i^{a_i} (x)$ (irreducible factors), can I admit $\frac{\mathbb{Z}_m [x]}{<f(x)>} \cong \bigoplus_{i=1} ^t \frac{\mathbb{Z}_m [x]}{<f_i ^{a_i}(x)>}$ as rings ? Or is it true just for $\mathbb{Z}_m$, for $m$ prime?
Thank you.